import gradio as gr import os import cv2 import face_recognition from fastai.vision.all import load_learner import time import chardet import base64 # import pathlib # temp = pathlib.PosixPath # pathlib.PosixPath = pathlib.WindowsPath model = load_learner("gaze-recognizer-v3.pkl") def video_processing(video_file, encoded_video): if encoded_video != "": decoded_file_data = base64.b64decode(encoded_video) with open("temp_video.mp4", "wb") as f: f.write(decoded_file_data) video_file = "temp_video.mp4" start_time = time.time() video_capture = cv2.VideoCapture(video_file) on_camera = 0 off_camera = 0 total = 0 while True: # Read a single frame from the video for i in range(24*3): ret, frame = video_capture.read() if not ret: break # If there are no more frames, break out of the loop if not ret: break # Convert the frame to RGB color (face_recognition uses RGB) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Find all the faces in the frame using a pre-trained convolutional neural network. face_locations = face_recognition.face_locations(gray) #face_locations = face_recognition.face_locations(gray, number_of_times_to_upsample=0, model="cnn") if len(face_locations) > 0: # Show the original frame with face rectangles drawn around the faces for top, right, bottom, left in face_locations: # cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) face_image = gray[top:bottom, left:right] # Resize the face image to the desired size resized_face_image = cv2.resize(face_image, (128,128)) # Predict the class of the resized face image using the model result = model.predict(resized_face_image) print(result[0]) if(result[0] == 'on_camera'): on_camera = on_camera + 1 elif(result[0] == 'off_camera'): off_camera = off_camera + 1 total = total + 1 try: # your processing code here gaze_percentage = on_camera / total * 100 except Exception as e: print(f"An error occurred while processing the video: {e}") gaze_percentage = f'no face detected Total = {total},on_camera = {on_camera},off_camera = {off_camera}' print(f'Total = {total},on_camera = {on_camera},off_camera = {off_camera}') # print(f'focus perfectage = {on_camera/total*100}') # Release the video capture object and close all windows video_capture.release() cv2.destroyAllWindows() end_time = time.time() print(f'Time taken: {end_time-start_time}') if os.path.exists("temp_video.mp4"): os.remove("temp_video.mp4") print(gaze_percentage) return str(gaze_percentage) demo = gr.Interface(fn=video_processing, inputs=["video", "text"], outputs="text") if __name__ == "__main__": demo.launch()