import gradio as gr from fastai.vision.all import * from huggingface_hub import from_pretrained_fastai # Cargar el modelo desde Hugging Face learn = from_pretrained_fastai("abelllanas/emotions_dl") labels = ["joy", "anger", "fear", "sadness"] # Obtener las etiquetas de emociones # Función para predecir emociones def predict(img): img = PILImage.create(img) # Convertir la imagen al formato adecuado pred, pred_idx, probs = learn.predict(img) # Realizar la predicción return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Emotion predictor" description = "A model based on paintings that tries to classify among joy, sadness, fear and anger." examples = ['alegria_pintura.jpg', 'tristeza_pintura.jpg', 'miedo_pintura.jpg','ira_pintura.jpg'] gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=4), title=title, description=description, examples=examples, ).launch()