Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,72 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
from tensorflow.keras.models import load_model as lm
|
4 |
-
from PIL import Image
|
5 |
-
import plotly.graph_objects as go
|
6 |
-
|
7 |
-
# Load your trained CIFAR model
|
8 |
-
model = lm('
|
9 |
-
|
10 |
-
# Define the CIFAR-10 class names
|
11 |
-
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
|
12 |
-
|
13 |
-
|
14 |
-
# Function to preprocess the image and predict the class
|
15 |
-
def classify_image(image):
|
16 |
-
# Ensure the image is in the right format
|
17 |
-
image = Image.fromarray(image).convert('RGB')
|
18 |
-
|
19 |
-
# Resize the image to (32, 32) as CIFAR-10 uses 32x32 images
|
20 |
-
image = image.resize((32, 32))
|
21 |
-
|
22 |
-
# Convert the image to an array and preprocess it
|
23 |
-
image_array = np.array(image).astype(np.float32) / 255.0 # Normalize to [0, 1]
|
24 |
-
|
25 |
-
# Expand dimensions to match model input shape (1, 32, 32, 3)
|
26 |
-
image_array = np.expand_dims(image_array, axis=0)
|
27 |
-
|
28 |
-
# Get predictions
|
29 |
-
predictions = model.predict(image_array)[0] # Get the prediction array for the first image
|
30 |
-
|
31 |
-
# Get the predicted class and its confidence
|
32 |
-
predicted_class_idx = np.argmax(predictions)
|
33 |
-
predicted_class = class_names[predicted_class_idx]
|
34 |
-
predicted_confidence = predictions[predicted_class_idx] * 100 # Convert to percentage
|
35 |
-
|
36 |
-
# Print predicted class and confidence
|
37 |
-
predicted_info = f"Predicted Class: {predicted_class} with {predicted_confidence:.2f}% confidence."
|
38 |
-
|
39 |
-
# Create a Plotly bar chart for class confidence levels
|
40 |
-
fig = go.Figure(go.Bar(
|
41 |
-
x=predictions * 100, # Convert probabilities to percentages
|
42 |
-
y=class_names,
|
43 |
-
orientation='h',
|
44 |
-
marker=dict(color='skyblue'),
|
45 |
-
text=[f"{conf:.1f}%" for conf in predictions * 100], # Show percentage labels
|
46 |
-
hoverinfo="text"
|
47 |
-
))
|
48 |
-
|
49 |
-
# Update layout for better presentation
|
50 |
-
fig.update_layout(
|
51 |
-
title="Class Confidence Levels",
|
52 |
-
xaxis_title="Confidence (%)",
|
53 |
-
yaxis_title="Classes",
|
54 |
-
xaxis=dict(range=[0, 100]), # Set x-axis to 0-100%
|
55 |
-
yaxis=dict(categoryorder='total ascending'), # Sort bars by confidence
|
56 |
-
bargap=0.2
|
57 |
-
)
|
58 |
-
|
59 |
-
return predicted_info, fig
|
60 |
-
|
61 |
-
|
62 |
-
# Define the Gradio interface
|
63 |
-
interface = gr.Interface(
|
64 |
-
fn=classify_image,
|
65 |
-
inputs=gr.Image(type="numpy"),
|
66 |
-
outputs=["text", gr.Plot()],
|
67 |
-
title="CIFAR Image Classification",
|
68 |
-
description="Upload an image, and the model will classify it as one of the CIFAR-10 classes."
|
69 |
-
)
|
70 |
-
|
71 |
-
# Launch the interface
|
72 |
-
interface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from tensorflow.keras.models import load_model as lm
|
4 |
+
from PIL import Image
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
|
7 |
+
# Load your trained CIFAR model
|
8 |
+
model = lm('build_model_1_v2.keras')
|
9 |
+
|
10 |
+
# Define the CIFAR-10 class names
|
11 |
+
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
|
12 |
+
|
13 |
+
|
14 |
+
# Function to preprocess the image and predict the class
|
15 |
+
def classify_image(image):
|
16 |
+
# Ensure the image is in the right format
|
17 |
+
image = Image.fromarray(image).convert('RGB')
|
18 |
+
|
19 |
+
# Resize the image to (32, 32) as CIFAR-10 uses 32x32 images
|
20 |
+
image = image.resize((32, 32))
|
21 |
+
|
22 |
+
# Convert the image to an array and preprocess it
|
23 |
+
image_array = np.array(image).astype(np.float32) / 255.0 # Normalize to [0, 1]
|
24 |
+
|
25 |
+
# Expand dimensions to match model input shape (1, 32, 32, 3)
|
26 |
+
image_array = np.expand_dims(image_array, axis=0)
|
27 |
+
|
28 |
+
# Get predictions
|
29 |
+
predictions = model.predict(image_array)[0] # Get the prediction array for the first image
|
30 |
+
|
31 |
+
# Get the predicted class and its confidence
|
32 |
+
predicted_class_idx = np.argmax(predictions)
|
33 |
+
predicted_class = class_names[predicted_class_idx]
|
34 |
+
predicted_confidence = predictions[predicted_class_idx] * 100 # Convert to percentage
|
35 |
+
|
36 |
+
# Print predicted class and confidence
|
37 |
+
predicted_info = f"Predicted Class: {predicted_class} with {predicted_confidence:.2f}% confidence."
|
38 |
+
|
39 |
+
# Create a Plotly bar chart for class confidence levels
|
40 |
+
fig = go.Figure(go.Bar(
|
41 |
+
x=predictions * 100, # Convert probabilities to percentages
|
42 |
+
y=class_names,
|
43 |
+
orientation='h',
|
44 |
+
marker=dict(color='skyblue'),
|
45 |
+
text=[f"{conf:.1f}%" for conf in predictions * 100], # Show percentage labels
|
46 |
+
hoverinfo="text"
|
47 |
+
))
|
48 |
+
|
49 |
+
# Update layout for better presentation
|
50 |
+
fig.update_layout(
|
51 |
+
title="Class Confidence Levels",
|
52 |
+
xaxis_title="Confidence (%)",
|
53 |
+
yaxis_title="Classes",
|
54 |
+
xaxis=dict(range=[0, 100]), # Set x-axis to 0-100%
|
55 |
+
yaxis=dict(categoryorder='total ascending'), # Sort bars by confidence
|
56 |
+
bargap=0.2
|
57 |
+
)
|
58 |
+
|
59 |
+
return predicted_info, fig
|
60 |
+
|
61 |
+
|
62 |
+
# Define the Gradio interface
|
63 |
+
interface = gr.Interface(
|
64 |
+
fn=classify_image,
|
65 |
+
inputs=gr.Image(type="numpy"),
|
66 |
+
outputs=["text", gr.Plot()],
|
67 |
+
title="CIFAR Image Classification",
|
68 |
+
description="Upload an image, and the model will classify it as one of the CIFAR-10 classes."
|
69 |
+
)
|
70 |
+
|
71 |
+
# Launch the interface
|
72 |
+
interface.launch()
|