abdulrahman245 commited on
Commit
c34f838
·
verified ·
1 Parent(s): 98bfa1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -72
app.py CHANGED
@@ -1,72 +1,72 @@
1
- import gradio as gr
2
- import numpy as np
3
- from tensorflow.keras.models import load_model as lm
4
- from PIL import Image
5
- import plotly.graph_objects as go
6
-
7
- # Load your trained CIFAR model
8
- model = lm('models/build_model_1_v2.keras')
9
-
10
- # Define the CIFAR-10 class names
11
- class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
12
-
13
-
14
- # Function to preprocess the image and predict the class
15
- def classify_image(image):
16
- # Ensure the image is in the right format
17
- image = Image.fromarray(image).convert('RGB')
18
-
19
- # Resize the image to (32, 32) as CIFAR-10 uses 32x32 images
20
- image = image.resize((32, 32))
21
-
22
- # Convert the image to an array and preprocess it
23
- image_array = np.array(image).astype(np.float32) / 255.0 # Normalize to [0, 1]
24
-
25
- # Expand dimensions to match model input shape (1, 32, 32, 3)
26
- image_array = np.expand_dims(image_array, axis=0)
27
-
28
- # Get predictions
29
- predictions = model.predict(image_array)[0] # Get the prediction array for the first image
30
-
31
- # Get the predicted class and its confidence
32
- predicted_class_idx = np.argmax(predictions)
33
- predicted_class = class_names[predicted_class_idx]
34
- predicted_confidence = predictions[predicted_class_idx] * 100 # Convert to percentage
35
-
36
- # Print predicted class and confidence
37
- predicted_info = f"Predicted Class: {predicted_class} with {predicted_confidence:.2f}% confidence."
38
-
39
- # Create a Plotly bar chart for class confidence levels
40
- fig = go.Figure(go.Bar(
41
- x=predictions * 100, # Convert probabilities to percentages
42
- y=class_names,
43
- orientation='h',
44
- marker=dict(color='skyblue'),
45
- text=[f"{conf:.1f}%" for conf in predictions * 100], # Show percentage labels
46
- hoverinfo="text"
47
- ))
48
-
49
- # Update layout for better presentation
50
- fig.update_layout(
51
- title="Class Confidence Levels",
52
- xaxis_title="Confidence (%)",
53
- yaxis_title="Classes",
54
- xaxis=dict(range=[0, 100]), # Set x-axis to 0-100%
55
- yaxis=dict(categoryorder='total ascending'), # Sort bars by confidence
56
- bargap=0.2
57
- )
58
-
59
- return predicted_info, fig
60
-
61
-
62
- # Define the Gradio interface
63
- interface = gr.Interface(
64
- fn=classify_image,
65
- inputs=gr.Image(type="numpy"),
66
- outputs=["text", gr.Plot()],
67
- title="CIFAR Image Classification",
68
- description="Upload an image, and the model will classify it as one of the CIFAR-10 classes."
69
- )
70
-
71
- # Launch the interface
72
- interface.launch()
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from tensorflow.keras.models import load_model as lm
4
+ from PIL import Image
5
+ import plotly.graph_objects as go
6
+
7
+ # Load your trained CIFAR model
8
+ model = lm('build_model_1_v2.keras')
9
+
10
+ # Define the CIFAR-10 class names
11
+ class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
12
+
13
+
14
+ # Function to preprocess the image and predict the class
15
+ def classify_image(image):
16
+ # Ensure the image is in the right format
17
+ image = Image.fromarray(image).convert('RGB')
18
+
19
+ # Resize the image to (32, 32) as CIFAR-10 uses 32x32 images
20
+ image = image.resize((32, 32))
21
+
22
+ # Convert the image to an array and preprocess it
23
+ image_array = np.array(image).astype(np.float32) / 255.0 # Normalize to [0, 1]
24
+
25
+ # Expand dimensions to match model input shape (1, 32, 32, 3)
26
+ image_array = np.expand_dims(image_array, axis=0)
27
+
28
+ # Get predictions
29
+ predictions = model.predict(image_array)[0] # Get the prediction array for the first image
30
+
31
+ # Get the predicted class and its confidence
32
+ predicted_class_idx = np.argmax(predictions)
33
+ predicted_class = class_names[predicted_class_idx]
34
+ predicted_confidence = predictions[predicted_class_idx] * 100 # Convert to percentage
35
+
36
+ # Print predicted class and confidence
37
+ predicted_info = f"Predicted Class: {predicted_class} with {predicted_confidence:.2f}% confidence."
38
+
39
+ # Create a Plotly bar chart for class confidence levels
40
+ fig = go.Figure(go.Bar(
41
+ x=predictions * 100, # Convert probabilities to percentages
42
+ y=class_names,
43
+ orientation='h',
44
+ marker=dict(color='skyblue'),
45
+ text=[f"{conf:.1f}%" for conf in predictions * 100], # Show percentage labels
46
+ hoverinfo="text"
47
+ ))
48
+
49
+ # Update layout for better presentation
50
+ fig.update_layout(
51
+ title="Class Confidence Levels",
52
+ xaxis_title="Confidence (%)",
53
+ yaxis_title="Classes",
54
+ xaxis=dict(range=[0, 100]), # Set x-axis to 0-100%
55
+ yaxis=dict(categoryorder='total ascending'), # Sort bars by confidence
56
+ bargap=0.2
57
+ )
58
+
59
+ return predicted_info, fig
60
+
61
+
62
+ # Define the Gradio interface
63
+ interface = gr.Interface(
64
+ fn=classify_image,
65
+ inputs=gr.Image(type="numpy"),
66
+ outputs=["text", gr.Plot()],
67
+ title="CIFAR Image Classification",
68
+ description="Upload an image, and the model will classify it as one of the CIFAR-10 classes."
69
+ )
70
+
71
+ # Launch the interface
72
+ interface.launch()