import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load a smaller model for CPU usage MODEL_NAME = "distilgpt2" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float32, device_map="cpu") def chat_with_ai(prompt): inputs = tokenizer(prompt, return_tensors="pt").to("cpu") output = model.generate(**inputs, max_length=200) response = tokenizer.decode(output[0], skip_special_tokens=True) return response # Create Gradio interface demo = gr.Interface( fn=chat_with_ai, inputs=gr.Textbox(placeholder="Ask me anything..."), outputs=gr.Textbox() ) demo.launch()