# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
""" Tokenization classes for IndoNLG model."""
from typing import List, Optional, Tuple, Union
from transformers import PreTrainedTokenizer
from transformers.utils import logging
import sentencepiece as spm
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"indobenchmark/indobart": "https://huggingface.co/indobenchmark/indobart/resolve/main/sentencepiece.bpe.model",
"indobenchmark/indogpt": "https://huggingface.co/indobenchmark/indogpt/resolve/main/sentencepiece.bpe.model",
"indobenchmark/indobart-v2": "https://huggingface.co/indobenchmark/indobart-v2/resolve/main/sentencepiece.bpe.model"
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"indobenchmark/indobart": 768,
"indobenchmark/indogpt": 768,
"indobenchmark/indobart-v2": 768
}
SHARED_MODEL_IDENTIFIERS = [
# Load with
"indobenchmark/indobart",
"indobenchmark/indogpt",
"indobenchmark/indobart-v2"
]
SPIECE_UNDERLINE = "▁"
# Define type aliases and NamedTuples
TextInput = str
PreTokenizedInput = List[str]
EncodedInput = List[int]
TextInputPair = Tuple[str, str]
PreTokenizedInputPair = Tuple[List[str], List[str]]
EncodedInputPair = Tuple[List[int], List[int]]
class IndoNLGTokenizer(PreTrainedTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels']
input_error_message = "text input must of type `str` (single example), `List[str]` (batch of examples)."
def __init__(
self,
vocab_file,
decode_special_token=True,
bos_token="",
eos_token="",
sep_token="",
cls_token="",
unk_token="",
pad_token="",
mask_token="",
additional_special_tokens=[],
**kwargs
):
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(str(vocab_file))
self.vocab_file = vocab_file
self.decode_special_token = decode_special_token
self.model_max_length = 1024
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for and
self.special_tokens_to_ids = {
"[javanese]": 40000,
"[sundanese]": 40001,
"[indonesian]": 40002,
"": 40003
}
self.special_ids_to_tokens = {v: k for k, v in self.special_tokens_to_ids.items()}
# Giving a warning when exists additional_special_tokens outside of dedicated special tokens.
for token in additional_special_tokens:
if token not in self.special_tokens_to_ids:
print(f"Warning: Additional special tokens will be ignored in IndoNLGTokenizer.")
break
# Store Language token ID
self.javanese_token = '[javanese]'
self.javanese_token_id = 40000
self.sundanese_token = '[sundanese]'
self.sundanese_token_id = 40001
self.indonesian_token = '[indonesian]'
self.indonesian_token_id = 40002
super().__init__(
vocab_file=vocab_file,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self.special_token_ids = [
self.bos_token_id, self.eos_token_id, self.sep_token_id, self.cls_token_id,
self.unk_token_id, self.pad_token_id, self.mask_token_id,
self.javanese_token_id, self.sundanese_token_id, self.indonesian_token_id
]
def prepare_input_for_generation(self, inputs, model_type='indobart', lang_token='[indonesian]', decoder_inputs=None,
decoder_lang_token='[indonesian]', padding='longest', return_tensors=None):
"""
Build model inputs for a specified `model_type`. There are two possible `model_type`, i.e., indobart and indogpt.
When `model_type` is indogpt, `lang_token`, `decoder_inputs`, and `decoder_lang_token` parameters will be ignored
and the input will be encoded in the gpt2 sequence format as follow:
- indogpt sequence: `` X``
When `model_type` is indobart, `inputs` and `lang_token` are used as the sequence and language identifier for the indobart encoder,
while `decoder_inputs` and `decoder_lang_token` are used as the sequence and language identifier of the decoder
- indobart encoder sequence: ``X ``
- indobart decoder sequences: `` X ``
Args:
inputs (:obj:`str` or `List[str]`):
text sequence or list of text sequences to be tokenized.
model_type (:obj:`str`, defaults to :obj:`indobart`):
model type to determine the format of the tokenized sequence. Valid values are `indobart` and `indogpt`.
lang_token (:obj:`str`, defaults to :obj:`[indonesian]`):
language token to determine the format of the tokenized sequence. Valid values are `[indonesian]`, `[sundanese], and [javanese]`.
decoder_inputs (:obj:`str` or `List[str]`, `optional`):
decoder text sequence or list of text sequences to be tokenized.
decoder_lang_token (:obj:`str`, defaults to :obj:`[indonesian]`):
decoder language token to determine the format of the tokenized sequence. Valid values are `[indonesian]`, `[sundanese], and [javanese]`.
padding (:obj:`str`, defaults to :obj:`longest`):
padding strategy to pad the tokenized sequences. Valid values are `longest`, `max_length`, and `do_not_pad`.
return_tensors (:obj:`str`, defaults to :obj:`None`):
Returned tensor type of the tokenized sequence. When set to `None`, the return type will be List[int]. Valid values are `None`, `pt`, and `tf`
Returns:
:obj:`Dict`: Dictionary with `input_ids`, `attention_mask`, `decoder_input_ids` (optional), and `decoder_attention_mask` (optional)
"""
if model_type == 'indogpt':
# Process indogpt input
if type(inputs) == str:
return self(f' {inputs}', padding=padding, return_tensors=return_tensors)
elif type(inputs) == list:
if len(inputs) == 0 or type(inputs[0]) != str:
raise ValueError(IndoNLGTokenizer.input_error_message)
else:
return self([f' {input_data}' for input_data in inputs], padding=padding, return_tensors=return_tensors)
else:
raise ValueError(IndoNLGTokenizer.input_error_message)
elif model_type == 'indobart':
# Process encoder input
if lang_token not in self.special_tokens_to_ids:
raise ValueError(f"Unknown lang_token `{lang_token}`, lang_token must be either `[javanese]`, `[sundanese]`, or `[indonesian]`")
elif type(inputs) == list:
if len(inputs) == 0 or type(inputs[0]) != str:
raise ValueError(IndoNLGTokenizer.input_error_message)
elif type(inputs) != str:
raise ValueError(IndoNLGTokenizer.input_error_message)
lang_id = self.special_tokens_to_ids[lang_token]
input_batch = self(inputs, return_attention_mask=False)
if type(inputs) == str:
input_batch['input_ids'] = [self.bos_token_id] + input_batch['input_ids'] + [self.eos_token_id, lang_id]
else:
input_batch['input_ids'] = list(map(lambda input_ids: [self.bos_token_id] + input_ids + [self.eos_token_id, lang_id], input_batch['input_ids']))
if decoder_inputs is None:
# Return encoder input
return self.pad(input_batch, return_tensors=return_tensors)
else:
# Process decoder input
if decoder_lang_token not in self.special_tokens_to_ids:
raise ValueError(f"Unknown decoder_lang_token `{decoder_lang_token}`, decoder_lang_token must be either `[javanese]`, `[sundanese]`, or `[indonesian]`")
elif type(decoder_inputs) == list:
if len(decoder_inputs) == 0:
raise ValueError(IndoNLGTokenizer.input_error_message)
elif type(decoder_inputs[0]) != str:
raise ValueError(IndoNLGTokenizer.input_error_message)
elif type(decoder_inputs) != str:
raise ValueError(IndoNLGTokenizer.input_error_message)
decoder_lang_id = self.special_tokens_to_ids[decoder_lang_token]
decoder_input_batch = self(decoder_inputs, return_attention_mask=False)
if type(decoder_inputs) == str:
labels = [self.bos_token_id] + decoder_input_batch['input_ids'] + [self.eos_token_id, decoder_lang_id]
decoder_input_batch['input_ids'] = [decoder_lang_id, self.bos_token_id] + decoder_input_batch['input_ids'] + [self.eos_token_id]
else:
labels = list(map(lambda input_ids: [self.bos_token_id] + input_ids + [self.eos_token_id, decoder_lang_id], decoder_input_batch['input_ids']))
decoder_input_batch['input_ids'] = list(map(lambda input_ids: [decoder_lang_id, self.bos_token_id] + input_ids + [self.eos_token_id], decoder_input_batch['input_ids']))
# Padding
input_batch = self.pad(input_batch, return_tensors=return_tensors)
decoder_input_batch = self.pad(decoder_input_batch, return_tensors=return_tensors)
labels = self.pad({'input_ids': labels}, return_tensors=return_tensors)['input_ids']
if not isinstance(labels, (list, tuple)):
labels[labels == self.pad_token_id] = -100
else:
labels = list(map(lambda x: -100 if x == self.pad_token_id else x, labels))
# Store into a single dict
input_batch['decoder_input_ids'] = decoder_input_batch['input_ids']
input_batch['decoder_attention_mask'] = decoder_input_batch['attention_mask']
input_batch['labels'] = labels
return input_batch
def __len__(self):
return max(self.special_ids_to_tokens) + 1
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` method.
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
@property
def vocab_size(self):
return 4 + len(self.sp_model)
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> List[str]:
return self.sp_model.encode(text.lower(), out_type=str)
def convert_ids_to_tokens(
self, ids: Union[int, List[int]], skip_special_tokens: bool = False
) -> Union[str, List[str]]:
"""
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
added tokens.
Args:
ids (`int` or `List[int]`):
The token id (or token ids) to convert to tokens.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
Returns:
`str` or `List[str]`: The decoded token(s).
"""
if isinstance(ids, int):
if ids not in self.added_tokens_decoder or ids in self.special_tokens_to_ids:
return self._convert_id_to_token(ids, skip_special_tokens=skip_special_tokens)
else:
return self.added_tokens_decoder[ids].content
tokens = []
for index in ids:
index = int(index)
if skip_special_tokens and index in (self.all_special_ids + list(self.special_tokens_to_ids.values())):
continue
if index not in self.added_tokens_decoder or index in self.special_tokens_to_ids:
tokens.append(self._convert_id_to_token(index, skip_special_tokens=skip_special_tokens))
else:
tokens.append(self.added_tokens_decoder[index].content)
return tokens
def _convert_token_to_id(self, token):
""" Converts a token (str) in an id using the vocab. """
if token in self.special_tokens_to_ids:
return self.special_tokens_to_ids[token]
return self.sp_model.PieceToId(token)
def _convert_id_to_token(self, index, skip_special_tokens=False):
"""Converts an index (integer) in a token (str) using the vocab."""
if skip_special_tokens and index in self.special_token_ids:
return ''
if index in self.special_ids_to_tokens:
return self.special_ids_to_tokens[index]
token = self.sp_model.IdToPiece(index)
if '<0x' in token:
char_rep = chr(int(token[1:-1], 0))
if char_rep.isprintable():
return char_rep
return token
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def decode(self, inputs, skip_special_tokens=False, **kwargs):
outputs = super().decode(inputs, skip_special_tokens=skip_special_tokens, **kwargs)
return outputs.replace(' ','').replace(SPIECE_UNDERLINE, ' ')