Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
|
4 |
+
from langchain import PromptTemplate, HuggingFaceHub, LLMChain
|
5 |
+
|
6 |
+
st.title("Generating Response with HuggingFace Models")
|
7 |
+
st.markdown("## Model: `facebook/blenderbot-1B-distill`")
|
8 |
+
|
9 |
+
def get_response(question: str) -> dict:
|
10 |
+
"""
|
11 |
+
Generate a response to a given question using the Blenderbot Large Language Model.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
question (str): The question to be answered.
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
dict: A dictionary containing the response text and metadata.
|
18 |
+
"""
|
19 |
+
template = """Question: {question}
|
20 |
+
|
21 |
+
Answer: Let's think step by step."""
|
22 |
+
|
23 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
24 |
+
|
25 |
+
llm_chain = LLMChain(prompt=prompt,
|
26 |
+
llm=HuggingFaceHub(repo_id="facebook/blenderbot-1B-distill",
|
27 |
+
model_kwargs={"temperature":0,
|
28 |
+
"max_length":64}))
|
29 |
+
|
30 |
+
response = llm_chain.invoke(question)
|
31 |
+
|
32 |
+
return response
|
33 |
+
|
34 |
+
question = st.text_area("Enter your question here...")
|
35 |
+
|
36 |
+
if st.button("Get Response") and question:
|
37 |
+
with st.spinner("Generating Response..."):
|
38 |
+
answer = get_response(question)
|
39 |
+
if answer is not None:
|
40 |
+
st.success('Great! Response generated successfully')
|
41 |
+
st.write(answer)
|
42 |
+
st.write(answer["text"])
|