import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from PyPDF2 import PdfReader # Models and tokenizers setup models = { "Text Generator (Bloom)": { "model": AutoModelForSeq2SeqLM.from_pretrained("bigscience/bloom-560m"), "tokenizer": AutoTokenizer.from_pretrained("bigscience/bloom-560m"), }, "PDF Summarizer (T5)": { "model": AutoModelForSeq2SeqLM.from_pretrained("t5-small"), "tokenizer": AutoTokenizer.from_pretrained("t5-small"), }, "Broken Answer (T0pp)": { "model": AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp"), "tokenizer": AutoTokenizer.from_pretrained("bigscience/T0pp"), }, } # Function for text generation def generate_text(model_choice, input_text, max_tokens, temperature, top_p): model_info = models[model_choice] tokenizer = model_info["tokenizer"] model = model_info["model"] inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512) outputs = model.generate( **inputs, max_length=max_tokens, num_beams=5, early_stopping=True, temperature=temperature, top_p=top_p ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Function for PDF summarization def summarize_pdf(pdf_file, max_tokens, temperature, top_p): reader = PdfReader(pdf_file) text = "" for page in reader.pages: text += page.extract_text() model_info = models["PDF Summarizer (T5)"] tokenizer = model_info["tokenizer"] model = model_info["model"] inputs = tokenizer("summarize: " + text, return_tensors="pt", padding=True, truncation=True, max_length=512) outputs = model.generate( **inputs, max_length=max_tokens, num_beams=5, early_stopping=True, temperature=temperature, top_p=top_p ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Build Gradio interface def launch_custom_app(): with gr.Blocks(theme=gr.themes.Monochrome()) as demo: gr.Markdown("
Switch between text generation, PDF summarization, or quirky broken answers!
") with gr.Tabs(): # Tab for Text Generation with gr.Tab("Text Generator"): model_choice = gr.Dropdown(choices=list(models.keys()), label="Choose a Model", value="Text Generator (Bloom)") input_text = gr.Textbox(label="Enter Text") max_tokens = gr.Slider(minimum=10, maximum=512, value=150, step=10, label="Max Tokens") temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") output_text = gr.Textbox(label="Generated Text", interactive=False) generate_button = gr.Button("Generate Text") generate_button.click( generate_text, inputs=[model_choice, input_text, max_tokens, temperature, top_p], outputs=output_text ) # Tab for PDF Summarization with gr.Tab("PDF Summarizer"): pdf_file = gr.File(label="Upload a PDF File", file_types=[".pdf"]) max_tokens_pdf = gr.Slider(minimum=10, maximum=512, value=150, step=10, label="Max Tokens") temperature_pdf = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature") top_p_pdf = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") summary_output = gr.Textbox(label="PDF Summary", interactive=False) summarize_button = gr.Button("Summarize PDF") summarize_button.click( summarize_pdf, inputs=[pdf_file, max_tokens_pdf, temperature_pdf, top_p_pdf], outputs=summary_output ) # Tab for Broken Model with gr.Tab("Broken Answers"): broken_input = gr.Textbox(label="Enter Text") broken_max_tokens = gr.Slider(minimum=10, maximum=512, value=150, step=10, label="Max Tokens") broken_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature") broken_top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") broken_output = gr.Textbox(label="Broken Model Output", interactive=False) broken_button = gr.Button("Generate Broken Answer") broken_button.click( lambda text, max_tokens, temp, top_p: generate_text("Broken Answer (T0pp)", text, max_tokens, temp, top_p), inputs=[broken_input, broken_max_tokens, broken_temperature, broken_top_p], outputs=broken_output ) demo.launch() # Launch the app launch_custom_app()