|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
from PyPDF2 import PdfReader |
|
|
|
|
|
models = { |
|
"Text Generator (Bloom)": { |
|
"model": AutoModelForSeq2SeqLM.from_pretrained("bigscience/bloom-560m"), |
|
"tokenizer": AutoTokenizer.from_pretrained("bigscience/bloom-560m"), |
|
}, |
|
"PDF Summarizer (T5)": { |
|
"model": AutoModelForSeq2SeqLM.from_pretrained("t5-small"), |
|
"tokenizer": AutoTokenizer.from_pretrained("t5-small"), |
|
}, |
|
"Broken Answer (T0pp)": { |
|
"model": AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp"), |
|
"tokenizer": AutoTokenizer.from_pretrained("bigscience/T0pp"), |
|
}, |
|
} |
|
|
|
|
|
def generate_text(model_choice, input_text, max_tokens, temperature, top_p): |
|
model_info = models[model_choice] |
|
tokenizer = model_info["tokenizer"] |
|
model = model_info["model"] |
|
|
|
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512) |
|
outputs = model.generate( |
|
**inputs, max_length=max_tokens, num_beams=5, early_stopping=True, temperature=temperature, top_p=top_p |
|
) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
def summarize_pdf(pdf_file, max_tokens, temperature, top_p): |
|
reader = PdfReader(pdf_file) |
|
text = "" |
|
for page in reader.pages: |
|
text += page.extract_text() |
|
|
|
model_info = models["PDF Summarizer (T5)"] |
|
tokenizer = model_info["tokenizer"] |
|
model = model_info["model"] |
|
|
|
inputs = tokenizer("summarize: " + text, return_tensors="pt", padding=True, truncation=True, max_length=512) |
|
outputs = model.generate( |
|
**inputs, max_length=max_tokens, num_beams=5, early_stopping=True, temperature=temperature, top_p=top_p |
|
) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
def launch_custom_app(): |
|
with gr.Blocks(theme=gr.themes.Monochrome()) as demo: |
|
gr.Markdown("<h1 style='text-align: center;'>💡 Multi-Model Assistant</h1>") |
|
gr.Markdown("<p style='text-align: center;'>Switch between text generation, PDF summarization, or quirky broken answers!</p>") |
|
|
|
with gr.Tabs(): |
|
|
|
with gr.Tab("Text Generator"): |
|
model_choice = gr.Dropdown(choices=list(models.keys()), label="Choose a Model", value="Text Generator (Bloom)") |
|
input_text = gr.Textbox(label="Enter Text") |
|
max_tokens = gr.Slider(minimum=10, maximum=512, value=150, step=10, label="Max Tokens") |
|
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature") |
|
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") |
|
output_text = gr.Textbox(label="Generated Text", interactive=False) |
|
generate_button = gr.Button("Generate Text") |
|
|
|
generate_button.click( |
|
generate_text, |
|
inputs=[model_choice, input_text, max_tokens, temperature, top_p], |
|
outputs=output_text |
|
) |
|
|
|
|
|
with gr.Tab("PDF Summarizer"): |
|
pdf_file = gr.File(label="Upload a PDF File", file_types=[".pdf"]) |
|
max_tokens_pdf = gr.Slider(minimum=10, maximum=512, value=150, step=10, label="Max Tokens") |
|
temperature_pdf = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature") |
|
top_p_pdf = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") |
|
summary_output = gr.Textbox(label="PDF Summary", interactive=False) |
|
summarize_button = gr.Button("Summarize PDF") |
|
|
|
summarize_button.click( |
|
summarize_pdf, |
|
inputs=[pdf_file, max_tokens_pdf, temperature_pdf, top_p_pdf], |
|
outputs=summary_output |
|
) |
|
|
|
|
|
with gr.Tab("Broken Answers"): |
|
broken_input = gr.Textbox(label="Enter Text") |
|
broken_max_tokens = gr.Slider(minimum=10, maximum=512, value=150, step=10, label="Max Tokens") |
|
broken_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature") |
|
broken_top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") |
|
broken_output = gr.Textbox(label="Broken Model Output", interactive=False) |
|
broken_button = gr.Button("Generate Broken Answer") |
|
|
|
broken_button.click( |
|
lambda text, max_tokens, temp, top_p: generate_text("Broken Answer (T0pp)", text, max_tokens, temp, top_p), |
|
inputs=[broken_input, broken_max_tokens, broken_temperature, broken_top_p], |
|
outputs=broken_output |
|
) |
|
|
|
demo.launch() |
|
|
|
|
|
launch_custom_app() |
|
|