import gradio as gr from ultralytics import YOLO import torch import numpy as np from utils.tools_gradio import fast_process from utils.tools import format_results # Load the FastSAM model model = YOLO("./weights/FastSAM.pt") device = torch.device("cpu") model.to(device) def get_input_scale(input, input_size=1024): input_size = int(input_size) w, h = input.size scale = input_size / max(w, h) new_w = int(w * scale) new_h = int(h * scale) input = input.resize((new_w, new_h)) return input, input_size def segment_everything( input, iou_threshold=0.9, confidence_threshold=0.4 ): input, input_size = get_input_scale(input) results = model( input, device=device, retina_masks=True, iou=iou_threshold, conf=confidence_threshold, imgsz=input_size, ) annotations = results[0].masks.data fig = fast_process( annotations=annotations, image=input, device=device, scale=(1024 // input_size), better_quality=False, mask_random_color=True, bbox=None, use_retina=True, withContours=True, ) return fig title = "FastSAM: Fast Segment Anything" description_e = "Demo project of FastSAM. Adapted from Ultralytics. CPU only." examples = [ ["examples/sa_8776.jpg"], ["examples/sa_414.jpg"], ["examples/sa_1309.jpg"], ["examples/sa_11025.jpg"], ["examples/sa_561.jpg"], ["examples/sa_192.jpg"], ["examples/sa_10039.jpg"], ["examples/sa_862.jpg"], ] default_example = examples[0] cond_img_e = gr.Image(label="Input", value=default_example[0], type="pil") segm_img_e = gr.Image(label="Segmented Image", interactive=False, type="pil") css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" with gr.Blocks(css=css, title="Fast Segment Anything") as demo: with gr.Row(): with gr.Column(scale=1): # Title gr.Markdown(title) with gr.Column(scale=1): # News gr.Markdown(description_e) with gr.Tab("Everything mode"): # Images with gr.Row(variant="panel"): with gr.Column(scale=1): cond_img_e.render() with gr.Column(scale=1): segm_img_e.render() # Submit & Clear with gr.Row(): with gr.Column(): segment_btn_e = gr.Button( "Segment Everything", variant="primary" ) clear_btn_e = gr.Button("Clear", variant="secondary") gr.Markdown("Try some of the examples below ⬇️") gr.Examples( examples=examples, inputs=[cond_img_e], outputs=segm_img_e, fn=segment_everything, cache_examples=True, examples_per_page=4, ) with gr.Column(): with gr.Accordion("Advanced options", open=False): iou_threshold = gr.Slider( 0.1, 0.9, 0.7, step=0.1, label="iou", info="iou threshold for filtering the annotations", ) conf_threshold = gr.Slider( 0.1, 0.9, 0.25, step=0.05, label="conf", info="object confidence threshold", ) # Description gr.Markdown(description_e) segment_btn_e.click( segment_everything, inputs=[cond_img_e, iou_threshold, conf_threshold], outputs=segm_img_e, ) def clear(): return None, None clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e]) demo.queue() demo.launch(debug=True)