import re import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel from datetime import date base_model = AutoModelForCausalLM.from_pretrained( 'meta-llama/Llama-2-7b-chat-hf', trust_remote_code=True, device_map="auto", ) model = PeftModel.from_pretrained( base_model, 'FinGPT/fingpt-forecaster_dow30_llama2-7b_lora' ) model = model.eval() tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-chat-hf') def construct_prompt(ticker, date, n_weeks): return ", ".join([ticker, date, str(n_weeks)]) def get_curday(): return date.today().strftime("%Y-%m-%d") def predict(ticker, date, n_weeks): prompt = construct_prompt(ticker, date, n_weeks) # inputs = tokenizer( # prompt, return_tensors='pt', # padding=False, max_length=4096 # ) # inputs = {key: value.to(model.device) for key, value in inputs.items()} # res = model.generate( # **inputs, max_length=4096, do_sample=True, # eos_token_id=tokenizer.eos_token_id, # use_cache=True # ) # output = tokenizer.decode(res[0], skip_special_tokens=True) # answer = re.sub(r'.*\[/INST\]\s*', '', output, flags=re.DOTALL) answer = prompt return answer demo = gr.Interface( predict, inputs=[ gr.Textbox( label="Ticker", value="AAPL", info="Companys from Dow-30 are recommended" ), gr.Textbox( label="Date", value=get_curday, info="Date from which the prediction is made, use format 'yyyy-mm-dd'" ), gr.Slider( minimum=1, maximum=4, value=3, step=1, label="n_weeks", info="Information of the past n weeks will be utilized, choose between 1 and 4" ), ], outputs="Response" ) demo.launch()