from transformers import MBartForConditionalGeneration, MBart50TokenizerFast import gradio as gr # Load the tokenizer and model model_checkpoint = "aryaumesh/english-to-telugu" tokenizer = MBart50TokenizerFast.from_pretrained(model_checkpoint) model = MBartForConditionalGeneration.from_pretrained(model_checkpoint) # Function to translate text def translate_to_telugu(text): inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs) translation = tokenizer.decode(outputs[0], skip_special_tokens=True) return translation # Create a Gradio interface iface = gr.Interface( fn=translate_to_telugu, inputs=gr.Textbox(lines=2, placeholder="Enter text in English..."), # Text input outputs=gr.Textbox(label="Translation to Telugu"), # Text output title="English to Telugu Translator", description="Translate text from English to Telugu using an MBart model." ) # Launch the Gradio interface iface.launch()