Update demo/UI.py
Browse files- demo/UI.py +59 -9
demo/UI.py
CHANGED
@@ -11,8 +11,6 @@ class Main_ui():
|
|
11 |
|
12 |
self.example_list = self.load_example()
|
13 |
self.sam = SAM_Inference()
|
14 |
-
# self.sam_predictor = get_sam_predictor()
|
15 |
-
# self.mask_generator = get_mask_generator()
|
16 |
|
17 |
def load_example(self):
|
18 |
examples = []
|
@@ -60,7 +58,7 @@ class Main_ui():
|
|
60 |
|
61 |
with gr.TabItem("Mask-based ROIs (BBox)"):
|
62 |
with gr.Row():
|
63 |
-
input_image_BBOX =
|
64 |
output_mask_BBOX = gr.Image(label='Mask-based ROI', height=512)
|
65 |
|
66 |
with gr.Row():
|
@@ -74,17 +72,33 @@ class Main_ui():
|
|
74 |
|
75 |
BBOX_example = gr.Dataset(label='Examples', components=[input_image_BBOX], samples=self.example_list)
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
input_image_ponit.upload(
|
79 |
self.seagull.init_image,
|
80 |
[input_image_ponit],
|
81 |
-
[preprocessed_img, input_image_ponit, input_image_BBOX]
|
82 |
)
|
83 |
|
84 |
point_example.click(
|
85 |
self.seagull.init_image,
|
86 |
[point_example],
|
87 |
-
[preprocessed_img, input_image_ponit, input_image_BBOX]
|
88 |
)
|
89 |
|
90 |
# after clicking on the image
|
@@ -104,17 +118,17 @@ class Main_ui():
|
|
104 |
[output_text_point]
|
105 |
)
|
106 |
|
107 |
-
# draw frame
|
108 |
input_image_BBOX.upload(
|
109 |
self.seagull.init_image,
|
110 |
[input_image_BBOX],
|
111 |
-
[preprocessed_img, input_image_ponit, input_image_BBOX]
|
112 |
)
|
113 |
|
114 |
BBOX_example.click(
|
115 |
self.seagull.init_image,
|
116 |
[BBOX_example],
|
117 |
-
[preprocessed_img, input_image_ponit, input_image_BBOX]
|
118 |
)
|
119 |
|
120 |
# after drawing a frame on the image
|
@@ -139,5 +153,41 @@ class Main_ui():
|
|
139 |
[preprocessed_img, binary_mask, radio_BBOX],
|
140 |
[output_text_BBOX]
|
141 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
return demo
|
|
|
11 |
|
12 |
self.example_list = self.load_example()
|
13 |
self.sam = SAM_Inference()
|
|
|
|
|
14 |
|
15 |
def load_example(self):
|
16 |
examples = []
|
|
|
58 |
|
59 |
with gr.TabItem("Mask-based ROIs (BBox)"):
|
60 |
with gr.Row():
|
61 |
+
input_image_BBOX = gr.Image(tool='boxes', type="numpy", label='Input image', height=512)
|
62 |
output_mask_BBOX = gr.Image(label='Mask-based ROI', height=512)
|
63 |
|
64 |
with gr.Row():
|
|
|
72 |
|
73 |
BBOX_example = gr.Dataset(label='Examples', components=[input_image_BBOX], samples=self.example_list)
|
74 |
|
75 |
+
with gr.TabItem("Mask-based ROIs (BBox with Points)"):
|
76 |
+
with gr.Row():
|
77 |
+
input_image_BBOX_Points = gr.Image(tool='boxes', type="numpy", label='Input image', height=512)
|
78 |
+
output_mask_BBOX_Points = gr.Image(label='Mask-based ROI', height=512)
|
79 |
+
|
80 |
+
with gr.Row():
|
81 |
+
output_BBOX_Points_mask_on_img = gr.Image(label='Mask on image', height=512)
|
82 |
+
|
83 |
+
with gr.Column():
|
84 |
+
radio_BBOX_Points = gr.Radio(label='Analysis type', choices=['Quality Score', 'Importance Score', 'Distortion Analysis'], value='Quality Score')
|
85 |
+
output_text_BBOX_Points = gr.Textbox(label='ROI Quality Analysis')
|
86 |
+
box_seg_button_with_point = gr.Button('Generate mask and analysis')
|
87 |
+
box_analyse_button_with_point = gr.Button('Analysis')
|
88 |
+
|
89 |
+
BBOX_Points_example = gr.Dataset(label='Examples', components=[input_image_BBOX_Points], samples=self.example_list)
|
90 |
+
|
91 |
+
# 1. click point
|
92 |
input_image_ponit.upload(
|
93 |
self.seagull.init_image,
|
94 |
[input_image_ponit],
|
95 |
+
[preprocessed_img, input_image_ponit, input_image_BBOX, input_image_BBOX_Points]
|
96 |
)
|
97 |
|
98 |
point_example.click(
|
99 |
self.seagull.init_image,
|
100 |
[point_example],
|
101 |
+
[preprocessed_img, input_image_ponit, input_image_BBOX, input_image_BBOX_Points]
|
102 |
)
|
103 |
|
104 |
# after clicking on the image
|
|
|
118 |
[output_text_point]
|
119 |
)
|
120 |
|
121 |
+
# 2. draw frame and use SAM to indicate the rois
|
122 |
input_image_BBOX.upload(
|
123 |
self.seagull.init_image,
|
124 |
[input_image_BBOX],
|
125 |
+
[preprocessed_img, input_image_ponit, input_image_BBOX, input_image_BBOX_Points]
|
126 |
)
|
127 |
|
128 |
BBOX_example.click(
|
129 |
self.seagull.init_image,
|
130 |
[BBOX_example],
|
131 |
+
[preprocessed_img, input_image_ponit, input_image_BBOX, input_image_BBOX_Points]
|
132 |
)
|
133 |
|
134 |
# after drawing a frame on the image
|
|
|
153 |
[preprocessed_img, binary_mask, radio_BBOX],
|
154 |
[output_text_BBOX]
|
155 |
)
|
156 |
+
|
157 |
+
# 3. draw frame and use the points
|
158 |
+
input_image_BBOX.upload(
|
159 |
+
self.seagull.init_image,
|
160 |
+
[input_image_BBOX],
|
161 |
+
[preprocessed_img, input_image_ponit, input_image_BBOX, input_image_BBOX_Points]
|
162 |
+
)
|
163 |
+
|
164 |
+
BBOX_Points_example.click(
|
165 |
+
self.seagull.init_image,
|
166 |
+
[BBOX_Points_example],
|
167 |
+
[preprocessed_img, input_image_ponit, input_image_BBOX, input_image_BBOX_Points]
|
168 |
+
)
|
169 |
+
|
170 |
+
# after drawing a frame on the image
|
171 |
+
input_image_BBOX_Points.select(
|
172 |
+
self.sam.gen_box_point,
|
173 |
+
[input_image_BBOX_Points],
|
174 |
+
[output_mask_BBOX_Points, output_BBOX_Points_mask_on_img, binary_mask]
|
175 |
+
)
|
176 |
+
|
177 |
+
box_seg_button_with_point.click(
|
178 |
+
self.sam.gen_box_point,
|
179 |
+
[input_image_BBOX_Points],
|
180 |
+
[output_mask_BBOX_Points, output_BBOX_Points_mask_on_img, binary_mask]
|
181 |
+
).then(
|
182 |
+
self.seagull.seagull_predict,
|
183 |
+
[preprocessed_img, binary_mask, radio_BBOX_Points],
|
184 |
+
[output_text_BBOX_Points]
|
185 |
+
)
|
186 |
+
|
187 |
+
box_analyse_button_with_point.click(
|
188 |
+
self.seagull.seagull_predict,
|
189 |
+
[preprocessed_img, binary_mask, radio_BBOX_Points],
|
190 |
+
[output_text_BBOX_Points]
|
191 |
+
)
|
192 |
|
193 |
return demo
|