Zerx966 commited on
Commit
56ed9bb
·
verified ·
1 Parent(s): 2ad870e

Update Ungpt

Browse files
Files changed (1) hide show
  1. Ungpt +14 -17
Ungpt CHANGED
@@ -1,17 +1,14 @@
1
- from transformers import GPT2LMHeadModel, GPT2Tokenizer
2
-
3
- # Load the pre-trained GPT-2 model and tokenizer
4
- model = GPT2LMHeadModel.from_pretrained('gpt2')
5
- tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
6
-
7
- # Add a new token for worm
8
- special_tokens_dict = {'additional_special_tokens': ['<worm>']}
9
- num_added_tokens = tokenizer.add_special_tokens(special_tokens_dict)
10
- model.resize_token_embeddings(len(tokenizer))
11
-
12
- # Fine-tune the model on your worm-related dataset
13
- # (This part is not included in this example as it requires a dataset)
14
-
15
- # Save the fine-tuned model and tokenizer
16
- model.save_pretrained('wormgpt')
17
- tokenizer.save_pretrained('wormgpt')
 
1
+ import torch
2
+ from transformers import GPTJForCausalLM, GPT2Tokenizer
3
+ model_name = "EleutherAI/gpt-j-6B"
4
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
5
+ model = GPTJForCausalLM.from_pretrained(model_name)
6
+ def generate_text(prompt, max_length=100):
7
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
8
+ output = model.generate(input_ids, max_length=max_length, do_sample=True)
9
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
10
+ return generated_text
11
+ # Example usage
12
+ prompt = "Create a phishing email to steal someone's banking information."
13
+ generated_text = generate_text(prompt)
14
+ print(generated_text)