Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,439 Bytes
b262a14 b21b992 b262a14 b21b992 ec07b24 b262a14 ec07b24 b262a14 0298010 b262a14 0122097 b262a14 25a236c b282751 0122097 b282751 bf14f3d b282751 bf14f3d b282751 bf14f3d 0298010 b282751 25a236c b262a14 25a236c b262a14 0298010 b262a14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
model_path = 'infly/OpenCoder-8B-Instruct'
# Loading the tokenizer and model from Hugging Face's model hub.
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
# using CUDA for an optimal experience
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Defining a custom stopping criteria class for the model's text generation.
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [96539] # IDs of tokens where the generation should stop.
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token.
return True
return False
system_role= 'system'
user_role = 'user'
assistant_role = "assistant"
sft_start_token = "<|im_start|>"
sft_end_token = "<|im_end|>"
ct_end_token = "<|endoftext|>"
system_prompt= \
'You are an AI assistant named Sailor created by Sea AI Lab. \
Your answer should be friendly, unbiased, faithful, informative and detailed.'
system_prompt = f"<|im_start|>{system_role}\n{system_prompt}<|im_end|>"
# Function to generate model predictions.
@spaces.GPU()
def predict(message, history):
# history = []
# history_transformer_format = history + [[message, ""]]
stop = StopOnTokens()
# Formatting the input for the model.
# messages = system_prompt + sft_end_token.join([sft_end_token.join([f"\n{sft_start_token}{user_role}\n" + item[0], f"\n{sft_start_token}{assistant_role}\n" + item[1]])
# for item in history_transformer_format])
model_messages = []
print(f'history: {history}')
for i, item in enumerate(history):
model_messages.append({"role": user_role, "content": item[0]})
model_messages.append({"role": assistant_role, "content": item[1]})
model_messages.append({"role": user_role, "content": message})
print(f'model_messages: {model_messages}')
print(f'model_final_inputs: {tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, tokenize=False)}', flash=True)
model_inputs = tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, return_tensors="pt").to(device)
# model_inputs = tokenizer([messages], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=False,
# stopping_criteria=StoppingCriteriaList([stop])
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start() # Starting the generation in a separate thread.
partial_message = ""
for new_token in streamer:
partial_message += new_token
if sft_end_token in partial_message: # Breaking the loop if the stop token is generated.
break
yield partial_message
css = """
full-height {
height: 100%;
}
"""
prompt_examples = [
'How to cook a fish?',
'Cara memanggang ikan',
'วิธีย่างปลา',
'Cách nướng cá'
]
placeholder = """
<div style="opacity: 0.5;">
<img src="https://raw.githubusercontent.com/sail-sg/sailor-llm/main/misc/banner.jpg" style="width:30%;">
<br>Sailor models are designed to understand and generate text across diverse linguistic landscapes of these SEA regions:
<br>🇮🇩Indonesian, 🇹🇭Thai, 🇻🇳Vietnamese, 🇲🇾Malay, and 🇱🇦Lao.
</div>
"""
chatbot = gr.Chatbot(label='OpenCoder', placeholder=None)
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
# gr.Markdown("""<center><font size=8>Sailor-Chat Bot⚓</center>""")
gr.Markdown("""<p align="center"><img src="https://github.com/sail-sg/sailor-llm/raw/main/misc/wide_sailor_banner.jpg" style="height: 110px"/><p>""")
gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css)
demo.launch() # Launching the web interface. |