import uuid from google.oauth2 import service_account from googleapiclient.discovery import build from env_setup import config import pandas as pd SCOPES = ['https://www.googleapis.com/auth/spreadsheets'] def authenticate_google_account(): service_account_file = config["google_creds"] if not service_account_file: raise ValueError("Service account credentials path is missing in env_setup.py.") return service_account.Credentials.from_service_account_file(service_account_file, scopes=SCOPES) def store_data_in_sheet(sheet_id, chunks, summary, overall_sentiment): creds = authenticate_google_account() service = build('sheets', 'v4', credentials=creds) sheet = service.spreadsheets() call_id = str(uuid.uuid4()) print(f"Call ID: {call_id}") values = [] if chunks: first_chunk, first_sentiment, _ = chunks[0] values.append([call_id, first_chunk, first_sentiment, summary, overall_sentiment]) for chunk, sentiment, _ in chunks[1:]: values.append(["", chunk, sentiment, "", ""]) header = ["Call ID", "Chunk", "Sentiment", "Summary", "Overall Sentiment"] all_values = [header] + values body = {'values': all_values} try: result = sheet.values().append( spreadsheetId=sheet_id, range="Sheet1!A1", valueInputOption="RAW", body=body ).execute() print(f"{result.get('updates').get('updatedCells')} cells updated in Google Sheets.") except Exception as e: print(f"Error updating Google Sheets: {e}") def fetch_call_data(sheet_id, sheet_range="Sheet1!A1:E"): """ Fetches data from the specified Google Sheet and returns a pandas DataFrame. :param sheet_id: The ID of the Google Sheet to fetch data from. :param sheet_range: The range in A1 notation to fetch data from. :return: pandas DataFrame with the sheet data. """ try: # Authenticate and get credentials creds = authenticate_google_account() service = build('sheets', 'v4', credentials=creds) sheet = service.spreadsheets() # Fetch the data result = sheet.values().get( spreadsheetId=sheet_id, range=sheet_range ).execute() # Get the rows rows = result.get("values", []) # If rows exist, convert to DataFrame if rows: # Use the first row as column headers headers = rows[0] data = rows[1:] # Create DataFrame df = pd.DataFrame(data, columns=headers) return df else: # Return an empty DataFrame if no data return pd.DataFrame() except Exception as e: print(f"Error fetching data from Google Sheets: {e}") # Return an empty DataFrame in case of error return pd.DataFrame()