Delete main.py
Browse files
main.py
DELETED
@@ -1,117 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pyaudio
|
3 |
-
import json
|
4 |
-
from vosk import Model, KaldiRecognizer
|
5 |
-
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
6 |
-
from sentence_transformers import SentenceTransformer
|
7 |
-
import time
|
8 |
-
import pandas as pd
|
9 |
-
from dotenv import load_dotenv
|
10 |
-
import os
|
11 |
-
import numpy as np
|
12 |
-
|
13 |
-
def cosine_similarity(a, b):
|
14 |
-
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
15 |
-
|
16 |
-
class SalesAnalysisApp:
|
17 |
-
def __init__(self):
|
18 |
-
model_name = "tabularisai/multilingual-sentiment-analysis"
|
19 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
20 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
-
self.sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
22 |
-
|
23 |
-
vosk_model_path = os.getenv("VOSK_MODEL_PATH")
|
24 |
-
self.vosk_model = Model(vosk_model_path)
|
25 |
-
self.recognizer = KaldiRecognizer(self.vosk_model, 16000)
|
26 |
-
|
27 |
-
self.audio = pyaudio.PyAudio()
|
28 |
-
self.stream = None
|
29 |
-
|
30 |
-
self.product_data = pd.read_csv(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
|
31 |
-
self.objection_data = pd.read_csv(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv")
|
32 |
-
|
33 |
-
self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
34 |
-
|
35 |
-
def get_recommendations(self, text):
|
36 |
-
text_embedding = self.sentence_model.encode([text])
|
37 |
-
product_embeddings = self.sentence_model.encode(self.product_data['Description'].tolist())
|
38 |
-
|
39 |
-
similarities = [cosine_similarity(text_embedding[0], prod_emb) for prod_emb in product_embeddings]
|
40 |
-
top_indices = np.argsort(similarities)[-5:][::-1]
|
41 |
-
return self.product_data.iloc[top_indices]['Product'].tolist()
|
42 |
-
|
43 |
-
def get_objection_response(self, text):
|
44 |
-
text_embedding = self.sentence_model.encode([text])
|
45 |
-
objection_embeddings = self.sentence_model.encode(self.objection_data['Objection'].tolist())
|
46 |
-
|
47 |
-
similarities = [cosine_similarity(text_embedding[0], obj_emb) for obj_emb in objection_embeddings]
|
48 |
-
max_similarity = max(similarities)
|
49 |
-
if max_similarity > 0.5:
|
50 |
-
top_idx = np.argmax(similarities)
|
51 |
-
return self.objection_data.iloc[top_idx]['Response']
|
52 |
-
return None
|
53 |
-
|
54 |
-
# Rest of the code remains the same...
|
55 |
-
def analyze_sentiment(self, text):
|
56 |
-
if not text.strip():
|
57 |
-
return "NEUTRAL", 0.0
|
58 |
-
result = self.sentiment_analyzer(text.strip().lower())[0]
|
59 |
-
sentiment_map = {
|
60 |
-
'Very Negative': "NEGATIVE",
|
61 |
-
'Negative': "NEGATIVE",
|
62 |
-
'Neutral': "NEUTRAL",
|
63 |
-
'Positive': "POSITIVE",
|
64 |
-
'Very Positive': "POSITIVE"
|
65 |
-
}
|
66 |
-
return sentiment_map.get(result['label'], "NEUTRAL"), result['score']
|
67 |
-
|
68 |
-
def run_app(self):
|
69 |
-
st.title("Real-time Sales Call Analysis")
|
70 |
-
|
71 |
-
if st.button("Start Recording"):
|
72 |
-
self.stream = self.audio.open(format=pyaudio.paInt16,
|
73 |
-
channels=1,
|
74 |
-
rate=16000,
|
75 |
-
input=True,
|
76 |
-
frames_per_buffer=4000)
|
77 |
-
|
78 |
-
transcript_placeholder = st.empty()
|
79 |
-
sentiment_placeholder = st.empty()
|
80 |
-
recommendations_placeholder = st.empty()
|
81 |
-
objections_placeholder = st.empty()
|
82 |
-
|
83 |
-
try:
|
84 |
-
while True:
|
85 |
-
data = self.stream.read(4000, exception_on_overflow=False)
|
86 |
-
|
87 |
-
if self.recognizer.AcceptWaveform(data):
|
88 |
-
result = json.loads(self.recognizer.Result())
|
89 |
-
text = result["text"]
|
90 |
-
|
91 |
-
if text:
|
92 |
-
transcript_placeholder.write(f"Transcription: {text}")
|
93 |
-
|
94 |
-
sentiment, score = self.analyze_sentiment(text)
|
95 |
-
sentiment_placeholder.write(f"Sentiment: {sentiment} (Score: {score:.2f})")
|
96 |
-
|
97 |
-
recommendations = self.get_recommendations(text)
|
98 |
-
if recommendations:
|
99 |
-
recommendations_placeholder.write("Product Recommendations:")
|
100 |
-
for rec in recommendations:
|
101 |
-
recommendations_placeholder.write(f"- {rec}")
|
102 |
-
|
103 |
-
objection_response = self.get_objection_response(text)
|
104 |
-
if objection_response:
|
105 |
-
objections_placeholder.write(f"Suggested Response: {objection_response}")
|
106 |
-
|
107 |
-
time.sleep(0.1)
|
108 |
-
|
109 |
-
except Exception as e:
|
110 |
-
st.error(f"Error: {str(e)}")
|
111 |
-
if self.stream:
|
112 |
-
self.stream.stop_stream()
|
113 |
-
self.stream.close()
|
114 |
-
|
115 |
-
if __name__ == "__main__":
|
116 |
-
app = SalesAnalysisApp()
|
117 |
-
app.run_app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|