Update product_recommender.py
Browse files- product_recommender.py +72 -19
product_recommender.py
CHANGED
@@ -1,19 +1,72 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
from sentence_transformers import SentenceTransformer
|
3 |
-
import faiss
|
4 |
-
|
5 |
-
class ProductRecommender:
|
6 |
-
def __init__(self, product_data_path):
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import faiss
|
4 |
+
|
5 |
+
class ProductRecommender:
|
6 |
+
def __init__(self, product_data_path):
|
7 |
+
try:
|
8 |
+
# Attempt to load the product data CSV
|
9 |
+
self.data = pd.read_csv(product_data_path)
|
10 |
+
print("Product data loaded successfully.")
|
11 |
+
except Exception as e:
|
12 |
+
print(f"Error loading product data: {e}")
|
13 |
+
self.data = pd.DataFrame() # Create an empty DataFrame if loading fails
|
14 |
+
return
|
15 |
+
|
16 |
+
try:
|
17 |
+
# Initialize the sentence transformer model
|
18 |
+
self.model = SentenceTransformer('all-MiniLM-L6-v2')
|
19 |
+
print("Model loaded successfully.")
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error loading SentenceTransformer model: {e}")
|
22 |
+
self.model = None # Set model to None if loading fails
|
23 |
+
return
|
24 |
+
|
25 |
+
try:
|
26 |
+
# Check if 'product_description' column exists
|
27 |
+
if 'product_description' not in self.data.columns:
|
28 |
+
print("Error: 'product_description' column is missing in the data.")
|
29 |
+
return
|
30 |
+
|
31 |
+
# Generate embeddings for the product descriptions
|
32 |
+
self.embeddings = self.model.encode(self.data['product_description'].tolist())
|
33 |
+
print(f"Embeddings generated successfully. Shape: {self.embeddings.shape}")
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error generating embeddings: {e}")
|
36 |
+
self.embeddings = None # Set embeddings to None if generation fails
|
37 |
+
return
|
38 |
+
|
39 |
+
try:
|
40 |
+
# Initialize FAISS index and add the embeddings
|
41 |
+
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
|
42 |
+
self.index.add(self.embeddings)
|
43 |
+
print("FAISS index created and embeddings added.")
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Error creating FAISS index or adding embeddings: {e}")
|
46 |
+
self.index = None # Set index to None if creation fails
|
47 |
+
return
|
48 |
+
|
49 |
+
def get_recommendations(self, query, top_n=5):
|
50 |
+
if self.model is None or self.index is None:
|
51 |
+
print("Error: Model or FAISS index not initialized. Cannot make recommendations.")
|
52 |
+
return []
|
53 |
+
|
54 |
+
try:
|
55 |
+
# Generate the embedding for the query
|
56 |
+
query_embedding = self.model.encode([query])
|
57 |
+
print(f"Query embedding generated. Shape: {query_embedding.shape}")
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Error generating query embedding: {e}")
|
60 |
+
return []
|
61 |
+
|
62 |
+
try:
|
63 |
+
# Search for top_n recommendations
|
64 |
+
distances, indices = self.index.search(query_embedding, top_n)
|
65 |
+
recommendations = []
|
66 |
+
for i in indices[0]:
|
67 |
+
recommendations.append(self.data.iloc[i]['product_title'] + ": " + self.data.iloc[i]['product_description'])
|
68 |
+
print(f"Recommendations generated successfully: {recommendations}")
|
69 |
+
return recommendations
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error during recommendation search: {e}")
|
72 |
+
return []
|