# -*- coding: utf-8 -*- """chatbot_with_memory (1).ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1sIEqI5-wciuiYOdlEYwBkTPUIlvMEzkF """ !pip install chromadb==0.4.6 !pip install pydantic==1.10 !pip install sentence-transformers !pip install huggingface_hub !pip install transformers from langchain.document_loaders import TextLoader #for textfiles from langchain.text_splitter import CharacterTextSplitter #text splitter from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models from langchain.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.chains.question_answering import load_qa_chain from langchain import HuggingFaceHub from langchain.document_loaders import UnstructuredPDFLoader #load pdf from langchain.indexes import VectorstoreIndexCreator #vectorize db index with chromadb from langchain.chains import RetrievalQA from langchain.document_loaders import UnstructuredURLLoader #load urls into docoument-loader from langchain.chains.question_answering import load_qa_chain from langchain import HuggingFaceHub import os huggingfacehub_api_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN") pip install pypdf from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter #import csvfrom langchain.document_loaders import PyPDFLoader # Load the PDF file from current working directory loader = PyPDFLoader("/content/Document sans titre (5).pdf") # Split the PDF into Pages pages = loader.load_and_split() #import from langchain.text_splitter import RecursiveCharacterTextSplitter # Define chunk size, overlap and separators text_splitter = RecursiveCharacterTextSplitter( chunk_size= 128, chunk_overlap=64, separators=['\n\n', '\n', '(?=>\. )', ' ', ''] ) docs = text_splitter.split_documents(pages) from langchain.embeddings import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings() pip install faiss-gpu #Create the vectorized db # Vectorstore: https://python.langchain.com/en/latest/modules/indexes/vectorstores.html from langchain.vectorstores import FAISS db = FAISS.from_documents(docs, embeddings) llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000, "max_new_tokens": 500}) chain = load_qa_chain(llm, chain_type="stuff") #QUERYING query = "quelles sont les villes les facultees de medcine ?" docs = db.similarity_search(query) chain.run(input_documents=docs, question=query) from langchain.chains import RetrievalQA qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=db.as_retriever(search_kwargs={"k": 3})) query = "donner moi plus des information sur les facultees de medcine?" qa.run(query) query = "What is the meaning of Descriptive Data Analysis?" qa.run(query)#import csv repo_id = 'google/flan-t5-xxl' # has 3B parameters: https://huggingface.co/lmsys/fastchat-t5-3b-v1.0 llm = HuggingFaceHub(huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"], repo_id=repo_id, model_kwargs={'temperature':0.5, 'max_length':256}) query1 = "Bonjour, je suis zaynab ,j'ai des questions a vous " query2 = "j'habite a marrakech. tu sait son pays?" query3 = "quel est mon prenom?" query4 = "ou j'habite" pip install langchain --upgrade from langchain import HuggingFaceHub from langchain.chains import ConversationChain """### Conversation Buffer memory""" from langchain.chains.conversation.memory import ConversationBufferMemory # Adjust the import path accordingly memory = ConversationBufferMemory() conversation_buf = ConversationChain( llm=llm, memory=memory) print("input: ",query1) conversation_buf.predict(input=query1) print("input: ",query2) conversation_buf.predict(input=query2) memory.load_memory_variables({}) print("input: ",query3) conversation_buf.predict(input=query3) print("input: ",query4) conversation_buf.predict(input=query4) print(memory.buffer) """### Conversation Buffer Window Memory""" from langchain.memory import ConversationBufferWindowMemory memory2 = ConversationBufferWindowMemory(k=2) conversation_buf2 = ConversationChain( llm=llm, memory=memory2 ) print("input: ",query1) conversation_buf2.predict(input=query1) print("input: ",query2) conversation_buf2.predict(input=query2) print("input: ",query3) conversation_buf2.predict(input=query3) print(memory2.buffer) """### Conversation Summary Memory""" from langchain.memory import ConversationSummaryBufferMemory memory3 = ConversationSummaryBufferMemory(llm=llm, max_token_limit=80) conversation_buf3 = ConversationChain( llm=llm, memory=memory3 ) print("input: ",query1) conversation_buf3.predict(input=query1) print("input: ",query2) conversation_buf3.predict(input=query2) print("input: ",query3) conversation_buf3.predict(input=query3) memory3.load_memory_variables({}) """### Chat PDF with Memory Updated version of Pydantic package (dependency of chromadb) has changed leaving chromadb, incompatible: here are the possible solutions: [import error chromadb](https://github.com/langchain-ai/langchain/issues/1957) || Install specific versions of chromadb and pydantic while the bug is resolved ![image.png]( """ !pip install pypdf import langchain import chromadb import os import getpass from langchain.document_loaders import PyPDFLoader #document loader: https://python.langchain.com/docs/modules/data_connection/document_loaders from langchain.text_splitter import RecursiveCharacterTextSplitter #document transformer: text splitter for chunking from langchain.embeddings import HuggingFaceEmbeddings from langchain import PromptTemplate from langchain.vectorstores import Chroma #vector store from langchain import HuggingFaceHub #model hub from langchain.chains import RetrievalQA from langchain.memory import ConversationBufferMemory #loading the API key import getpass import os os.environ['HUGGING_FACE_HUB_API_KEY'] = getpass.getpass('Hugging face api key:') path = input("Enter PDF file path: ")#"C:/Users/Sourav/Downloads/pdf" loader = PyPDFLoader(path) pages = loader.load() #number of pages len(pages) splitter = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=10) docs = splitter.split_documents(pages) tokens = docs num_tokens = len(tokens) print("Nombre de jetons :", num_tokens) for token in tokens: print(token) embeddings = HuggingFaceEmbeddings() doc_search = Chroma.from_documents(docs, embeddings) print(doc_search) query = "Quelle sont les Facultees existent ?" similar_docs = doc_search.similarity_search(query, k=3) print(similar_docs) query = "donner moi des information ecole nationale d'Industrie Minérale ?" similar_docs = doc_search.similarity_search(query, k=10) repo_id = 'google/flan-t5-xxl' # has 3B parameters: https://huggingface.co/lmsys/fastchat-t5-3b-v1.0 llm = HuggingFaceHub(huggingfacehub_api_token=os.environ['HUGGING_FACE_HUB_API_KEY'], repo_id=repo_id, model_kwargs={'temperature':1, 'max_length':10000000000, "max_tokens":1000000000}) template = """ Use the following context (delimited by ) and the chat history (delimited by ) to answer the question: ------ {context} ------ {history} ------ {question} Answer: """ prompt = PromptTemplate( input_variables=["history", "context", "question"], template=template, ) memory = ConversationBufferMemory( memory_key="history", input_key="question" ) retrieval_chain = RetrievalQA.from_chain_type(llm, chain_type='stuff', retriever=doc_search.as_retriever(), chain_type_kwargs={ "prompt": prompt, "memory": memory }) query = " donner moi les villes de ces facultees de medcine? " retrieval_chain.run(query) query = "donner moi des information sur Facultees de medcine ?" retrieval_chain.run(query) memory.load_memory_variables({})