import torch import torch.nn as nn import torch.nn.functional as F from academicodec.modules import NormConv1d from academicodec.modules import NormConv2d from academicodec.utils import get_padding from torch.nn import AvgPool1d from torch.nn.utils import spectral_norm from torch.nn.utils import weight_norm LRELU_SLOPE = 0.1 class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False, activation: str='LeakyReLU', activation_params: dict={'negative_slope': 0.2}): super(DiscriminatorP, self).__init__() self.period = period norm_f = weight_norm if use_spectral_norm is False else spectral_norm self.activation = getattr(torch.nn, activation)(**activation_params) self.convs = nn.ModuleList([ NormConv2d( 1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0)), NormConv2d( 32, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0)), NormConv2d( 32, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0)), NormConv2d( 32, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0)), NormConv2d(32, 32, (kernel_size, 1), 1, padding=(2, 0)), ]) self.conv_post = NormConv2d(32, 1, (3, 1), 1, padding=(1, 0)) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = self.activation(x) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self): super(MultiPeriodDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorP(2), DiscriminatorP(3), DiscriminatorP(5), DiscriminatorP(7), DiscriminatorP(11), ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm=False, activation: str='LeakyReLU', activation_params: dict={'negative_slope': 0.2}): super(DiscriminatorS, self).__init__() self.activation = getattr(torch.nn, activation)(**activation_params) self.convs = nn.ModuleList([ NormConv1d(1, 32, 15, 1, padding=7), NormConv1d(32, 32, 41, 2, groups=4, padding=20), NormConv1d(32, 32, 41, 2, groups=16, padding=20), NormConv1d(32, 32, 41, 4, groups=16, padding=20), NormConv1d(32, 32, 41, 4, groups=16, padding=20), NormConv1d(32, 32, 41, 1, groups=16, padding=20), NormConv1d(32, 32, 5, 1, padding=2), ]) self.conv_post = NormConv1d(32, 1, 3, 1, padding=1) def forward(self, x): fmap = [] for l in self.convs: x = l(x) x = self.activation(x) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(torch.nn.Module): def __init__(self): super(MultiScaleDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorS(), DiscriminatorS(), DiscriminatorS(), ]) self.meanpools = nn.ModuleList( [AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if i != 0: y = self.meanpools[i - 1](y) y_hat = self.meanpools[i - 1](y_hat) y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs