import datetime as dt import math import random import torch import matcha.utils.monotonic_align as monotonic_align from matcha import utils from matcha.models.baselightningmodule import BaseLightningClass from matcha.models.components.flow_matching import CFM from matcha.models.components.text_encoder import TextEncoder from matcha.utils.model import ( denormalize, duration_loss, fix_len_compatibility, generate_path, sequence_mask, ) log = utils.get_pylogger(__name__) class MatchaTTS(BaseLightningClass): # 🍵 def __init__( self, n_vocab, n_spks, spk_emb_dim, n_feats, encoder, decoder, cfm, data_statistics, out_size, optimizer=None, scheduler=None, prior_loss=True, ): super().__init__() self.save_hyperparameters(logger=False) self.n_vocab = n_vocab self.n_spks = n_spks self.spk_emb_dim = spk_emb_dim self.n_feats = n_feats self.out_size = out_size self.prior_loss = prior_loss if n_spks > 1: self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim) self.encoder = TextEncoder( encoder.encoder_type, encoder.encoder_params, encoder.duration_predictor_params, n_vocab, n_spks, spk_emb_dim, ) self.decoder = CFM( in_channels=2 * encoder.encoder_params.n_feats, out_channel=encoder.encoder_params.n_feats, cfm_params=cfm, decoder_params=decoder, n_spks=n_spks, spk_emb_dim=spk_emb_dim, ) self.update_data_statistics(data_statistics) @torch.inference_mode() def synthesise(self, x, x_lengths, n_timesteps, temperature=1.0, spks=None, length_scale=1.0): """ Generates mel-spectrogram from text. Returns: 1. encoder outputs 2. decoder outputs 3. generated alignment Args: x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids. shape: (batch_size, max_text_length) x_lengths (torch.Tensor): lengths of texts in batch. shape: (batch_size,) n_timesteps (int): number of steps to use for reverse diffusion in decoder. temperature (float, optional): controls variance of terminal distribution. spks (bool, optional): speaker ids. shape: (batch_size,) length_scale (float, optional): controls speech pace. Increase value to slow down generated speech and vice versa. Returns: dict: { "encoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length), # Average mel spectrogram generated by the encoder "decoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length), # Refined mel spectrogram improved by the CFM "attn": torch.Tensor, shape: (batch_size, max_text_length, max_mel_length), # Alignment map between text and mel spectrogram "mel": torch.Tensor, shape: (batch_size, n_feats, max_mel_length), # Denormalized mel spectrogram "mel_lengths": torch.Tensor, shape: (batch_size,), # Lengths of mel spectrograms "rtf": float, # Real-time factor """ # For RTF computation t = dt.datetime.now() if self.n_spks > 1: # Get speaker embedding spks = self.spk_emb(spks.long()) # Get encoder_outputs `mu_x` and log-scaled token durations `logw` mu_x, logw, x_mask = self.encoder(x, x_lengths, spks) w = torch.exp(logw) * x_mask w_ceil = torch.ceil(w) * length_scale y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() y_max_length = y_lengths.max() y_max_length_ = fix_len_compatibility(y_max_length) # Using obtained durations `w` construct alignment map `attn` y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype) attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1) # Align encoded text and get mu_y mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) mu_y = mu_y.transpose(1, 2) encoder_outputs = mu_y[:, :, :y_max_length] # Generate sample tracing the probability flow decoder_outputs = self.decoder(mu_y, y_mask, n_timesteps, temperature, spks) decoder_outputs = decoder_outputs[:, :, :y_max_length] t = (dt.datetime.now() - t).total_seconds() rtf = t * 22050 / (decoder_outputs.shape[-1] * 256) return { "encoder_outputs": encoder_outputs, "decoder_outputs": decoder_outputs, "attn": attn[:, :, :y_max_length], "mel": denormalize(decoder_outputs, self.mel_mean, self.mel_std), "mel_lengths": y_lengths, "rtf": rtf, } def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None): """ Computes 3 losses: 1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS). 2. prior loss: loss between mel-spectrogram and encoder outputs. 3. flow matching loss: loss between mel-spectrogram and decoder outputs. Args: x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids. shape: (batch_size, max_text_length) x_lengths (torch.Tensor): lengths of texts in batch. shape: (batch_size,) y (torch.Tensor): batch of corresponding mel-spectrograms. shape: (batch_size, n_feats, max_mel_length) y_lengths (torch.Tensor): lengths of mel-spectrograms in batch. shape: (batch_size,) out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained. Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size. spks (torch.Tensor, optional): speaker ids. shape: (batch_size,) """ if self.n_spks > 1: # Get speaker embedding spks = self.spk_emb(spks) # Get encoder_outputs `mu_x` and log-scaled token durations `logw` mu_x, logw, x_mask = self.encoder(x, x_lengths, spks) y_max_length = y.shape[-1] y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask) attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) # Use MAS to find most likely alignment `attn` between text and mel-spectrogram with torch.no_grad(): const = -0.5 * math.log(2 * math.pi) * self.n_feats factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device) y_square = torch.matmul(factor.transpose(1, 2), y**2) y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y) mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1) log_prior = y_square - y_mu_double + mu_square + const attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1)) attn = attn.detach() # Compute loss between predicted log-scaled durations and those obtained from MAS # refered to as prior loss in the paper logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask dur_loss = duration_loss(logw, logw_, x_lengths) # Cut a small segment of mel-spectrogram in order to increase batch size # - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it # - Do not need this hack for Matcha-TTS, but it works with it as well if not isinstance(out_size, type(None)): max_offset = (y_lengths - out_size).clamp(0) offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy())) out_offset = torch.LongTensor( [torch.tensor(random.choice(range(start, end)) if end > start else 0) for start, end in offset_ranges] ).to(y_lengths) attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device) y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device) y_cut_lengths = [] for i, (y_, out_offset_) in enumerate(zip(y, out_offset)): y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0) y_cut_lengths.append(y_cut_length) cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper] attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper] y_cut_lengths = torch.LongTensor(y_cut_lengths) y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask) attn = attn_cut y = y_cut y_mask = y_cut_mask # Align encoded text with mel-spectrogram and get mu_y segment mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) mu_y = mu_y.transpose(1, 2) # Compute loss of the decoder diff_loss, _ = self.decoder.compute_loss(x1=y, mask=y_mask, mu=mu_y, spks=spks, cond=cond) if self.prior_loss: prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask) prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats) else: prior_loss = 0 return dur_loss, prior_loss, diff_loss