""" from https://github.com/jaywalnut310/glow-tts """ import math import torch import torch.nn as nn from einops import rearrange import matcha.utils as utils from matcha.utils.model import sequence_mask log = utils.get_pylogger(__name__) class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-4): super().__init__() self.channels = channels self.eps = eps self.gamma = torch.nn.Parameter(torch.ones(channels)) self.beta = torch.nn.Parameter(torch.zeros(channels)) def forward(self, x): n_dims = len(x.shape) mean = torch.mean(x, 1, keepdim=True) variance = torch.mean((x - mean) ** 2, 1, keepdim=True) x = (x - mean) * torch.rsqrt(variance + self.eps) shape = [1, -1] + [1] * (n_dims - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class ConvReluNorm(nn.Module): def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout self.conv_layers = torch.nn.ModuleList() self.norm_layers = torch.nn.ModuleList() self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) self.norm_layers.append(LayerNorm(hidden_channels)) self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout)) for _ in range(n_layers - 1): self.conv_layers.append( torch.nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2) ) self.norm_layers.append(LayerNorm(hidden_channels)) self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask): x_org = x for i in range(self.n_layers): x = self.conv_layers[i](x * x_mask) x = self.norm_layers[i](x) x = self.relu_drop(x) x = x_org + self.proj(x) return x * x_mask class DurationPredictor(nn.Module): def __init__(self, in_channels, filter_channels, kernel_size, p_dropout): super().__init__() self.in_channels = in_channels self.filter_channels = filter_channels self.p_dropout = p_dropout self.drop = torch.nn.Dropout(p_dropout) self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2) self.norm_1 = LayerNorm(filter_channels) self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2) self.norm_2 = LayerNorm(filter_channels) self.proj = torch.nn.Conv1d(filter_channels, 1, 1) def forward(self, x, x_mask): x = self.conv_1(x * x_mask) x = torch.relu(x) x = self.norm_1(x) x = self.drop(x) x = self.conv_2(x * x_mask) x = torch.relu(x) x = self.norm_2(x) x = self.drop(x) x = self.proj(x * x_mask) return x * x_mask class RotaryPositionalEmbeddings(nn.Module): """ ## RoPE module Rotary encoding transforms pairs of features by rotating in the 2D plane. That is, it organizes the $d$ features as $\frac{d}{2}$ pairs. Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it by an angle depending on the position of the token. """ def __init__(self, d: int, base: int = 10_000): r""" * `d` is the number of features $d$ * `base` is the constant used for calculating $\Theta$ """ super().__init__() self.base = base self.d = int(d) self.cos_cached = None self.sin_cached = None def _build_cache(self, x: torch.Tensor): r""" Cache $\cos$ and $\sin$ values """ # Return if cache is already built if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]: return # Get sequence length seq_len = x.shape[0] # $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$ theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device) # Create position indexes `[0, 1, ..., seq_len - 1]` seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device) # Calculate the product of position index and $\theta_i$ idx_theta = torch.einsum("n,d->nd", seq_idx, theta) # Concatenate so that for row $m$ we have # $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$ idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1) # Cache them self.cos_cached = idx_theta2.cos()[:, None, None, :] self.sin_cached = idx_theta2.sin()[:, None, None, :] def _neg_half(self, x: torch.Tensor): # $\frac{d}{2}$ d_2 = self.d // 2 # Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$ return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1) def forward(self, x: torch.Tensor): """ * `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]` """ # Cache $\cos$ and $\sin$ values x = rearrange(x, "b h t d -> t b h d") self._build_cache(x) # Split the features, we can choose to apply rotary embeddings only to a partial set of features. x_rope, x_pass = x[..., : self.d], x[..., self.d :] # Calculate # $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$ neg_half_x = self._neg_half(x_rope) x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]]) return rearrange(torch.cat((x_rope, x_pass), dim=-1), "t b h d -> b h t d") class MultiHeadAttention(nn.Module): def __init__( self, channels, out_channels, n_heads, heads_share=True, p_dropout=0.0, proximal_bias=False, proximal_init=False, ): super().__init__() assert channels % n_heads == 0 self.channels = channels self.out_channels = out_channels self.n_heads = n_heads self.heads_share = heads_share self.proximal_bias = proximal_bias self.p_dropout = p_dropout self.attn = None self.k_channels = channels // n_heads self.conv_q = torch.nn.Conv1d(channels, channels, 1) self.conv_k = torch.nn.Conv1d(channels, channels, 1) self.conv_v = torch.nn.Conv1d(channels, channels, 1) # from https://nn.labml.ai/transformers/rope/index.html self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5) self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5) self.conv_o = torch.nn.Conv1d(channels, out_channels, 1) self.drop = torch.nn.Dropout(p_dropout) torch.nn.init.xavier_uniform_(self.conv_q.weight) torch.nn.init.xavier_uniform_(self.conv_k.weight) if proximal_init: self.conv_k.weight.data.copy_(self.conv_q.weight.data) self.conv_k.bias.data.copy_(self.conv_q.bias.data) torch.nn.init.xavier_uniform_(self.conv_v.weight) def forward(self, x, c, attn_mask=None): q = self.conv_q(x) k = self.conv_k(c) v = self.conv_v(c) x, self.attn = self.attention(q, k, v, mask=attn_mask) x = self.conv_o(x) return x def attention(self, query, key, value, mask=None): b, d, t_s, t_t = (*key.size(), query.size(2)) query = rearrange(query, "b (h c) t-> b h t c", h=self.n_heads) key = rearrange(key, "b (h c) t-> b h t c", h=self.n_heads) value = rearrange(value, "b (h c) t-> b h t c", h=self.n_heads) query = self.query_rotary_pe(query) key = self.key_rotary_pe(key) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels) if self.proximal_bias: assert t_s == t_t, "Proximal bias is only available for self-attention." scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) if mask is not None: scores = scores.masked_fill(mask == 0, -1e4) p_attn = torch.nn.functional.softmax(scores, dim=-1) p_attn = self.drop(p_attn) output = torch.matmul(p_attn, value) output = output.transpose(2, 3).contiguous().view(b, d, t_t) return output, p_attn @staticmethod def _attention_bias_proximal(length): r = torch.arange(length, dtype=torch.float32) diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) class FFN(nn.Module): def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.p_dropout = p_dropout self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2) self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2) self.drop = torch.nn.Dropout(p_dropout) def forward(self, x, x_mask): x = self.conv_1(x * x_mask) x = torch.relu(x) x = self.drop(x) x = self.conv_2(x * x_mask) return x * x_mask class Encoder(nn.Module): def __init__( self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.0, **kwargs, ): super().__init__() self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.drop = torch.nn.Dropout(p_dropout) self.attn_layers = torch.nn.ModuleList() self.norm_layers_1 = torch.nn.ModuleList() self.ffn_layers = torch.nn.ModuleList() self.norm_layers_2 = torch.nn.ModuleList() for _ in range(self.n_layers): self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) self.norm_layers_1.append(LayerNorm(hidden_channels)) self.ffn_layers.append( FFN( hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, ) ) self.norm_layers_2.append(LayerNorm(hidden_channels)) def forward(self, x, x_mask): attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) for i in range(self.n_layers): x = x * x_mask y = self.attn_layers[i](x, x, attn_mask) y = self.drop(y) x = self.norm_layers_1[i](x + y) y = self.ffn_layers[i](x, x_mask) y = self.drop(y) x = self.norm_layers_2[i](x + y) x = x * x_mask return x class TextEncoder(nn.Module): def __init__( self, encoder_type, encoder_params, duration_predictor_params, n_vocab, n_spks=1, spk_emb_dim=128, ): super().__init__() self.encoder_type = encoder_type self.n_vocab = n_vocab self.n_feats = encoder_params.n_feats self.n_channels = encoder_params.n_channels self.spk_emb_dim = spk_emb_dim self.n_spks = n_spks self.emb = torch.nn.Embedding(n_vocab, self.n_channels) torch.nn.init.normal_(self.emb.weight, 0.0, self.n_channels**-0.5) if encoder_params.prenet: self.prenet = ConvReluNorm( self.n_channels, self.n_channels, self.n_channels, kernel_size=5, n_layers=3, p_dropout=0.5, ) else: self.prenet = lambda x, x_mask: x self.encoder = Encoder( encoder_params.n_channels + (spk_emb_dim if n_spks > 1 else 0), encoder_params.filter_channels, encoder_params.n_heads, encoder_params.n_layers, encoder_params.kernel_size, encoder_params.p_dropout, ) self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1) self.proj_w = DurationPredictor( self.n_channels + (spk_emb_dim if n_spks > 1 else 0), duration_predictor_params.filter_channels_dp, duration_predictor_params.kernel_size, duration_predictor_params.p_dropout, ) def forward(self, x, x_lengths, spks=None): """Run forward pass to the transformer based encoder and duration predictor Args: x (torch.Tensor): text input shape: (batch_size, max_text_length) x_lengths (torch.Tensor): text input lengths shape: (batch_size,) spks (torch.Tensor, optional): speaker ids. Defaults to None. shape: (batch_size,) Returns: mu (torch.Tensor): average output of the encoder shape: (batch_size, n_feats, max_text_length) logw (torch.Tensor): log duration predicted by the duration predictor shape: (batch_size, 1, max_text_length) x_mask (torch.Tensor): mask for the text input shape: (batch_size, 1, max_text_length) """ x = self.emb(x) * math.sqrt(self.n_channels) x = torch.transpose(x, 1, -1) x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.prenet(x, x_mask) if self.n_spks > 1: x = torch.cat([x, spks.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1) x = self.encoder(x, x_mask) mu = self.proj_m(x) * x_mask x_dp = torch.detach(x) logw = self.proj_w(x_dp, x_mask) return mu, logw, x_mask