import gradio as gr from paddlenlp import Taskflow from PIL import Image vision_language=Taskflow("feature_extraction", model='PaddlePaddle/ernie_vil-2.0-base-zh') def getImageTestFeture(content,flag): if flag==1: f_embeds = vision_language(Image.open(content)) else: f_embeds = vision_language(content) text_features = f_embeds["features"][0] text_features=text_features.tolist() return text_features def quickstart(name,fileinfo): pname=name flag=0 if not fileinfo is None: pname=fileinfo.name flag=1 xp=getImageTestFeture(pname,flag) return xp demo = gr.Interface(fn=quickstart, inputs=["text","file"], outputs="text") demo.launch()