File size: 8,860 Bytes
773c7bd
 
376b5d9
773c7bd
376b5d9
 
773c7bd
 
 
f784787
376b5d9
 
 
773c7bd
 
 
2906d24
 
 
 
773c7bd
f784787
773c7bd
376b5d9
773c7bd
 
376b5d9
773c7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f58d262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58b0a1f
2906d24
c837795
2906d24
773c7bd
f58d262
773c7bd
c837795
773c7bd
c837795
f58d262
 
4f420c4
 
2906d24
4f420c4
 
c837795
 
 
773c7bd
 
2906d24
c837795
 
 
2906d24
f58d262
c837795
 
 
f58d262
 
 
c837795
 
2906d24
c837795
 
2906d24
c837795
 
 
f58d262
 
 
 
c837795
 
 
 
2906d24
c837795
 
 
 
2906d24
c837795
 
 
 
 
 
 
 
 
 
2906d24
 
c837795
 
 
2906d24
 
c837795
 
 
773c7bd
c837795
 
 
 
 
2906d24
c837795
 
2906d24
376b5d9
 
773c7bd
2906d24
 
 
 
 
 
 
 
 
773c7bd
 
 
 
2906d24
7ca618f
 
 
2906d24
773c7bd
 
 
 
 
2906d24
 
 
 
 
773c7bd
 
 
 
 
 
 
2906d24
376b5d9
 
773c7bd
 
 
f3c059c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import csv
import datetime
import os
import re
import time
import uuid
from io import StringIO

import gradio as gr
import spaces
import torch
import torchaudio
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from vinorm import TTSnorm
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import FileResponse

app = FastAPI()

os.system("python -m unidic download")

HF_TOKEN = os.environ.get("HF_TOKEN")
api = HfApi(token=HF_TOKEN)

print("Downloading if not downloaded viXTTS")
checkpoint_dir = "model/"
repo_id = "capleaf/viXTTS"
use_deepspeed = False

os.makedirs(checkpoint_dir, exist_ok=True)

required_files = ["model.pth", "config.json", "vocab.json", "speakers_xtts.pth"]
files_in_dir = os.listdir(checkpoint_dir)
if not all(file in files_in_dir for file in required_files):
    snapshot_download(
        repo_id=repo_id,
        repo_type="model",
        local_dir=checkpoint_dir,
    )
    hf_hub_download(
        repo_id="coqui/XTTS-v2",
        filename="speakers_xtts.pth",
        local_dir=checkpoint_dir,
    )

xtts_config = os.path.join(checkpoint_dir, "config.json")
config = XttsConfig()
config.load_json(xtts_config)
MODEL = Xtts.init_from_config(config)
MODEL.load_checkpoint(
    config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed
)
if torch.cuda.is_available():
    MODEL.cuda()

supported_languages = config.languages
if not "vi" in supported_languages:
    supported_languages.append("vi")


def normalize_vietnamese_text(text):
    text = (
        TTSnorm(text, unknown=False, lower=False, rule=True)
        .replace("..", ".")
        .replace("!.", "!")
        .replace("?.", "?")
        .replace(" .", ".")
        .replace(" ,", ",")
        .replace('"', "")
        .replace("'", "")
        .replace("AI", "Ây Ai")
        .replace("A.I", "Ây Ai")
    )
    return text


def calculate_keep_len(text, lang):
    if lang in ["ja", "zh-cn"]:
        return -1

    word_count = len(text.split())
    num_punct = text.count(".") + text.count("!") + text.count("?") + text.count(",")

    if word_count < 5:
        return 15000 * word_count + 2000 * num_punct
    elif word_count < 10:
        return 13000 * word_count + 2000 * num_punct
    return -1


@spaces.GPU(queue=False)
def predict(prompt, language, audio_file_pth, normalize_text=True):
    if language not in supported_languages:
        metrics_text = gr.Warning(f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown")

        return (None, metrics_text)

    speaker_wav = audio_file_pth

    if len(prompt) < 2:
        metrics_text = gr.Warning("Please give a longer prompt text")
        return (None, metrics_text)

    if len(prompt) > 250:
        metrics_text = gr.Warning(str(len(prompt)) + " characters.\n" + "Your prompt is too long, please keep it under 250 characters\n" + "Văn bản quá dài, vui lòng giữ dưới 250 ký tự.")
        return (None, metrics_text)

    try:
        metrics_text = ""
        t_latent = time.time()

        try:
            (gpt_cond_latent, speaker_embedding) = MODEL.get_conditioning_latents(audio_path=speaker_wav, gpt_cond_len=30, gpt_cond_chunk_len=4, max_ref_length=60)

        except Exception as e:
            print("Speaker encoding error", str(e))
            metrics_text = gr.Warning("It appears something wrong with reference, did you unmute your microphone?")
            return (None, metrics_text)

        prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)

        if normalize_text and language == "vi":
            prompt = normalize_vietnamese_text(prompt)

        print("I: Generating new audio...")
        t0 = time.time()
        out = MODEL.inference(prompt, language, gpt_cond_latent, speaker_embedding, repetition_penalty=5.0, temperature=0.75, enable_text_splitting=True)
        inference_time = time.time() - t0
        print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
        metrics_text += f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
        real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
        print(f"Real-time factor (RTF): {real_time_factor}")
        metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"

        keep_len = calculate_keep_len(prompt, language)
        out["wav"] = out["wav"][:keep_len]

        torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)

    except RuntimeError as e:
        if "device-side assert" in str(e):
            print(f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}", flush=True)
            gr.Warning("Unhandled Exception encounter, please retry in a minute")
            print("Cuda device-assert Runtime encountered need restart")

            error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
            error_data = [error_time, prompt, language, audio_file_pth]
            error_data = [str(e) if type(e) != str else e for e in error_data]
            print(error_data)
            print(speaker_wav)
            write_io = StringIO()
            csv.writer(write_io).writerows([error_data])
            csv_upload = write_io.getvalue().encode()

            filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
            print("Writing error csv")
            error_api = HfApi()
            error_api.upload_file(path_or_fileobj=csv_upload, path_in_repo=filename, repo_id="coqui/xtts-flagged-dataset", repo_type="dataset")

            print("Writing error reference audio")
            speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
            error_api = HfApi()
            error_api.upload_file(path_or_fileobj=speaker_wav, path_in_repo=speaker_filename, repo_id="coqui/xtts-flagged-dataset", repo_type="dataset")

            space = api.get_space_runtime(repo_id=repo_id)
            if space.stage != "BUILDING":
                api.restart_space(repo_id=repo_id)
            else:
                print("TRIED TO RESTART but space is building")

        else:
            if "Failed to decode" in str(e):
                print("Speaker encoding error", str(e))
                metrics_text = gr.Warning(metrics_text="It appears something wrong with reference, did you unmute your microphone?")
            else:
                print("RuntimeError: non device-side assert error:", str(e))
                metrics_text = gr.Warning("Something unexpected happened please retry again.")
            return (None, metrics_text)
    return ("output.wav", metrics_text)

@app.post("/synthesize")
async def api_synthesize(prompt: str, language: str = "vi", audio_file: UploadFile = File(...)):
    audio_file_path = f"temp_{uuid.uuid4()}.wav"
    with open(audio_file_path, "wb") as f:
        f.write(await audio_file.read())

    audio_output_path, metrics_text = predict(prompt, language, audio_file_path)

    return FileResponse(audio_output_path, media_type="audio/wav")

with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown("""
                # viXTTS Demo ✨
                - Github: https://github.com/thinhlpg/vixtts-demo/
                - viVoice: https://github.com/thinhlpg/viVoice
                """)
        with gr.Column():
            pass

    with gr.Row():
        with gr.Column():
            input_text_gr = gr.Textbox(label="Text Prompt (Văn bản cần đọc)", info="Mỗi câu nên từ 10 từ trở lên. Tối đa 250 ký tự (khoảng 2 - 3 câu).", value="Xin chào, tôi là một mô hình chuyển đổi văn bản thành giọng nói tiếng Việt.")
            language_gr = gr.Dropdown(label="Language (Ngôn ngữ)", choices=["vi", "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "ko", "hu", "hi"], max_choices=1, value="vi")
            normalize_text = gr.Checkbox(label="Chuẩn hóa văn bản tiếng Việt", info="Normalize Vietnamese text", value=True)
            ref_gr = gr.Audio(label="Reference Audio (Giọng mẫu)", type="filepath", value="model/samples/nu-luu-loat.wav")
            tts_button = gr.Button("Đọc 🗣️🔥", elem_id="send-btn", visible=True, variant="primary")

        with gr.Column():
            audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
            out_text_gr = gr.Text(label="Metrics")

    tts_button.click(
        predict,
        [input_text_gr, language_gr, ref_gr, normalize_text],
        outputs=[audio_gr, out_text_gr],
        api_name="predict",
    )

demo.queue()
demo.launch(debug=True, show_api=True, share=True, server_name="0.0.0.0", server_port=7860)