# -*- coding: utf-8 -*- """Heart_Disease_Prediction.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1cqMvzxYU8QVM8IdfByIymr-3YryFBU5p Importing the Dependencies """ import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score """Data Collection and Processing""" # loading the csv data to a Pandas DataFrame heart_data = pd.read_csv('/content/heart_disease_data.csv') # print first 5 rows of the dataset heart_data.head() # print last 5 rows of the dataset heart_data.tail() # number of rows and columns in the dataset heart_data.shape # getting some info about the data heart_data.info() # checking for missing values heart_data.isnull().sum() # statistical measures about the data heart_data.describe() # checking the distribution of Target Variable heart_data['target'].value_counts() """1 --> Defective Heart 0 --> Healthy Heart Splitting the Features and Target """ X = heart_data.drop(columns='target', axis=1) Y = heart_data['target'] print(X) print(Y) """Splitting the Data into Training data & Test Data""" X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2) print(X.shape, X_train.shape, X_test.shape) """Model Training Logistic Regression """ model = LogisticRegression() # training the LogisticRegression model with Training data model.fit(X_train, Y_train) """Model Evaluation Accuracy Score """ # accuracy on training data X_train_prediction = model.predict(X_train) training_data_accuracy = accuracy_score(X_train_prediction, Y_train) print('Accuracy on Training data : ', training_data_accuracy) # accuracy on test data X_test_prediction = model.predict(X_test) test_data_accuracy = accuracy_score(X_test_prediction, Y_test) print('Accuracy on Test data : ', test_data_accuracy) """Building a Predictive System""" def heart_predict(age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal): #input_data = (62,0,0,140,268,0,0,160,0,3.6,0,2,2) sex="" if sex == "male": sex = 0 else: sex = 1 input_data = (age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal) # change the input data to a numpy array input_data_as_numpy_array= np.asarray(input_data) # reshape the numpy array as we are predicting for only on instance input_data_reshaped = input_data_as_numpy_array.reshape(1,-1) prediction = model.predict(input_data_reshaped) print(prediction) if (prediction[0]== 0): print('The Person does not have a Heart Disease') return 'The Person does not have a Heart Disease' else: print('The Person has Heart Disease') return 'The Person has Heart Disease' heart_predict(62,"female",0,140,268,0,0,160,0,3.6,0,2,2) #!pip install gradio import gradio as gr def heart_predict(age,sex_R,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal): #input_data = (62,0,0,140,268,0,0,160,0,3.6,0,2,2) sex="" if sex == "male": sex = 0 else: sex = 1 input_data = (age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal) # change the input data to a numpy array input_data_as_numpy_array= np.asarray(input_data) # reshape the numpy array as we are predicting for only on instance input_data_reshaped = input_data_as_numpy_array.reshape(1,-1) prediction = model.predict(input_data_reshaped) print(prediction) if (prediction[0]== 0): print('The Person does not have a Heart Disease') return 'The Person does not have a Heart Disease' else: print('The Person has Heart Disease') return 'The Person has Heart Disease' demo = gr.Interface( fn=heart_predict, inputs = [ gr.Slider(1, 100, value=62, label="age", info="Choose between 1 and 20"), gr.Radio(["male","female"], value="male", label="sex", info="select"), gr.Slider(1, 100, value=0, label="cp", info="Choose between 1 and 100"), gr.Slider(1, 50, value=140, label="trestbps", info="Choose between 1 and 50"), gr.Slider(1, 200, value=268, label="chol", info="Choose between 1 and 200"), gr.Slider(1, 100, value=0, label="fbs", info="Choose between 1 and 100"), gr.Slider(0.0, 2.0, value=0, label="restecg", info="Choose between 0.0 and 1.0"), gr.Slider(1, 100, value=160, label="thalach", info="Choose between 1 and 100"), gr.Slider(1, 100, value=0, label="exang", info="Choose between 1 and 100"), gr.Slider(1, 100, value=3.6, label="oldpeak", info="Choose between 1 and 100"), gr.Slider(1, 100, value=0, label="slope", info="Choose between 1 and 100"), gr.Slider(1, 100, value=2, label="ca", info="Choose between 1 and 100"), gr.Slider(1, 100, value=2, label="thal", info="Choose between 1 and 100"), ], outputs = "text", ) if __name__ == "__main__": demo.launch()