# -*- coding: utf-8 -*- """Diabetes.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/15IbzL0ARqBYPhh4fx4KN2rJ62USEmIO2 Importing the Dependencies """ #pip install -U scikit-learn import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn import svm from sklearn.metrics import accuracy_score """Data Collection and Analysis PIMA Diabetes Dataset """ # loading the diabetes dataset to a pandas DataFrame diabetes_dataset = pd.read_csv('/content/diabetes.csv') # printing the first 5 rows of the dataset diabetes_dataset.head() # number of rows and Columns in this dataset diabetes_dataset.shape # getting the statistical measures of the data diabetes_dataset.describe() diabetes_dataset['Outcome'].value_counts() """0 --> Non-Diabetic 1 --> Diabetic """ diabetes_dataset.groupby('Outcome').mean() # separating the data and labels X = diabetes_dataset.drop(columns = 'Outcome', axis=1) Y = diabetes_dataset['Outcome'] print(X) print(Y) """Data Standardization""" scaler = StandardScaler() scaler.fit(X) standardized_data = scaler.transform(X) print(standardized_data) X = standardized_data Y = diabetes_dataset['Outcome'] print(X) print(Y) """Train Test Split""" X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.2, stratify=Y, random_state=2) print(X.shape, X_train.shape, X_test.shape) """Training the Model""" classifier = svm.SVC(kernel='linear') #training the support vector Machine Classifier classifier.fit(X_train, Y_train) """Model Evaluation Accuracy Score """ # accuracy score on the training data X_train_prediction = classifier.predict(X_train) training_data_accuracy = accuracy_score(X_train_prediction, Y_train) print('Accuracy score of the training data : ', training_data_accuracy) # accuracy score on the test data X_test_prediction = classifier.predict(X_test) test_data_accuracy = accuracy_score(X_test_prediction, Y_test) print('Accuracy score of the test data : ', test_data_accuracy) """Making a Predictive System""" def predict(Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age): #input_data = (5,166,72,19,175,25.8,0.587,51) input_data = (Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age) # changing the input_data to numpy array input_data_as_numpy_array = np.asarray(input_data) # reshape the array as we are predicting for one instance input_data_reshaped = input_data_as_numpy_array.reshape(1,-1) # standardize the input data std_data = scaler.transform(input_data_reshaped) print(std_data) prediction = classifier.predict(std_data) #print(prediction) if (prediction[0] == 0): print('The person is not diabetic') else: print('The person is diabetic') return prediction predict(4,136,64,20,175,25.6,0.597,50) import gradio as gr def dibetis_predict(Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age): #input_data = (5,166,72,19,175,25.8,0.587,51) input_data = (Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age) # changing the input_data to numpy array input_data_as_numpy_array = np.asarray(input_data) # reshape the array as we are predicting for one instance input_data_reshaped = input_data_as_numpy_array.reshape(1,-1) # standardize the input data std_data = scaler.transform(input_data_reshaped) print(std_data) prediction = classifier.predict(std_data) if (prediction[0] == 0): print('The person is not diabetic') return 'The person is not diabetic' else: print('The person is diabetic') return 'The person is diabetic' demo = gr.Interface( fn=dibetis_predict, inputs = [ gr.Slider(1, 20, value=4, label="Pregnancies", info="Choose between 1 and 20"), gr.Slider(1, 200, value=136, label="Glucose", info="Choose between 1 and 200"), gr.Slider(1, 100, value=64, label="BloodPressure", info="Choose between 1 and 100"), gr.Slider(1, 50, value=20, label="SkinThickness", info="Choose between 1 and 50"), gr.Slider(1, 200, value=175, label="Insulin", info="Choose between 1 and 200"), gr.Slider(1, 100, value=25.5, label="BMI", info="Choose between 1 and 100"), gr.Slider(0, 1.0, value=0.549, label="DiabetesPedigreeFunction", info="Choose between 0.0 and 1.0"), gr.Slider(1, 100, value=50, label="Age", info="Choose between 1 and 100"), ], outputs = "text", ) if __name__ == "__main__": demo.launch(share=True)