File size: 4,812 Bytes
ab31d46
 
 
 
 
 
 
 
 
 
337c210
ab31d46
 
 
 
 
 
 
 
 
 
 
 
 
 
e1ec722
ab31d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89df161
ab31d46
8155166
ab31d46
 
 
 
 
 
 
 
a0c9c31
a5e5fe5
ab31d46
 
 
 
932bd4e
ab31d46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# -*- coding: utf-8 -*-
"""Diabetes.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/15IbzL0ARqBYPhh4fx4KN2rJ62USEmIO2

Importing the Dependencies
"""
#pip install -U scikit-learn

import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score

"""Data Collection and Analysis

PIMA Diabetes Dataset
"""

# loading the diabetes dataset to a pandas DataFrame
diabetes_dataset = pd.read_csv('diabetes.csv')


# printing the first 5 rows of the dataset
diabetes_dataset.head()

# number of rows and Columns in this dataset
diabetes_dataset.shape

# getting the statistical measures of the data
diabetes_dataset.describe()

diabetes_dataset['Outcome'].value_counts()

"""0 --> Non-Diabetic

1 --> Diabetic
"""

diabetes_dataset.groupby('Outcome').mean()

# separating the data and labels
X = diabetes_dataset.drop(columns = 'Outcome', axis=1)
Y = diabetes_dataset['Outcome']

print(X)

print(Y)

"""Data Standardization"""

scaler = StandardScaler()

scaler.fit(X)

standardized_data = scaler.transform(X)

print(standardized_data)

X = standardized_data
Y = diabetes_dataset['Outcome']

print(X)
print(Y)

"""Train Test Split"""

X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.2, stratify=Y, random_state=2)

print(X.shape, X_train.shape, X_test.shape)

"""Training the Model"""

classifier = svm.SVC(kernel='linear')

#training the support vector Machine Classifier
classifier.fit(X_train, Y_train)

"""Model Evaluation

Accuracy Score
"""

# accuracy score on the training data
X_train_prediction = classifier.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)

print('Accuracy score of the training data : ', training_data_accuracy)

# accuracy score on the test data
X_test_prediction = classifier.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)

print('Accuracy score of the test data : ', test_data_accuracy)

"""Making a Predictive System"""

def predict(Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age):
  #input_data = (5,166,72,19,175,25.8,0.587,51)
  input_data = (Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age)


  # changing the input_data to numpy array
  input_data_as_numpy_array = np.asarray(input_data)

  # reshape the array as we are predicting for one instance
  input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

  # standardize the input data
  std_data = scaler.transform(input_data_reshaped)
  print(std_data)

  prediction = classifier.predict(std_data)
  #print(prediction)

  if (prediction[0] == 0):
    print('The person is not diabetic')
  else:
    print('The person is diabetic')
  return prediction

predict(4,136,64,20,175,25.6,0.597,50)


import gradio as gr


def dibetis_predict(Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age):
  #input_data = (5,166,72,19,175,25.8,0.587,51)
  input_data = (Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age)


  # changing the input_data to numpy array
  input_data_as_numpy_array = np.asarray(input_data)

  # reshape the array as we are predicting for one instance
  input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

  # standardize the input data
  std_data = scaler.transform(input_data_reshaped)
  print(std_data)

  prediction = classifier.predict(std_data)

  if (prediction[0] == 0):
    print('The person is not diabetic')
    return 'The person is not diabetic'
  else:
    print('The person is diabetic')
    return 'The person is diabetic'




demo = gr.Interface(
    fn=dibetis_predict,
    
    inputs = [
        gr.Slider(0, 20, value=4, label="Pregnancies", info="Choose between 0 and 20"),
        gr.Slider(1, 200, value=136, label="Glucose", info="Choose between 1 and 200"),
        gr.Slider(1, 100, value=64, label="BloodPressure", info="Choose between 1 and 100"),
        gr.Slider(1, 50, value=20, label="SkinThickness", info="Choose between 1 and 50"),
        gr.Slider(1, 200, value=175, label="Insulin", info="Choose between 1 and 200"),
        gr.Slider(1, 100, value=25.5, label="BMI", info="Choose between 1 and 100"),
        gr.Slider(0, 1.0, value=0.549, label="DiabetesPedigreeFunction", info="Choose between 0.0 and 1.0"),
        gr.Slider(1, 100, value=50, label="Age", info="Choose between 1 and 100"),
    ],
    #description="Diabetes Prediction Model By Yash Rawal"
    #Markdown("""Dibetese prediction system by Yash Rawal""")
    outputs = "text",
)

if __name__ == "__main__":
    demo.launch()