import logging import gradio as gr import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download import src.envs as envs from main_backend import PENDING_STATUS, RUNNING_STATUS, FINISHED_STATUS, FAILED_STATUS from src.backend import sort_queue from src.envs import EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, RESULTS_REPO import src.backend.manage_requests as manage_requests import socket import src.display.about as about from src.display.css_html_js import custom_css import src.display.utils as utils import src.populate as populate from src.populate import get_evaluation_queue_df, get_leaderboard_df import src.submission.submit as submit import os import datetime import spacy_transformers import pprint import src.backend.run_eval_suite as run_eval_suite pp = pprint.PrettyPrinter(width=80) TOKEN = os.environ.get("H4_TOKEN", None) print("TOKEN", TOKEN) def ui_snapshot_download(repo_id, local_dir, repo_type, tqdm_class, etag_timeout): try: print("local", local_dir) snapshot_download(repo_id=repo_id, local_dir=local_dir, repo_type=repo_type, tqdm_class=tqdm_class, etag_timeout=etag_timeout) except Exception as e: restart_space() def restart_space(): envs.API.restart_space(repo_id=envs.REPO_ID, token=TOKEN) def init_space(): #dataset_df = get_dataset_summary_table(file_path='blog/Hallucination-Leaderboard-Summary.csv') ui_snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30) ui_snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30) original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, utils.COLS, utils.BENCHMARK_COLS) finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, utils.EVAL_COLS) return original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space() leaderboard_df = original_df.copy() def process_pending_evals(): current_pending_status = [PENDING_STATUS] print('_________________') manage_requests.check_completed_evals( api=envs.API, checked_status=RUNNING_STATUS, completed_status=FINISHED_STATUS, failed_status=FAILED_STATUS, hf_repo=envs.QUEUE_REPO, local_dir=envs.EVAL_REQUESTS_PATH_BACKEND, hf_repo_results=envs.RESULTS_REPO, local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND ) logging.info("Checked completed evals") eval_requests = manage_requests.get_eval_requests( job_status=current_pending_status, hf_repo=envs.QUEUE_REPO, local_dir=envs.EVAL_REQUESTS_PATH_BACKEND ) logging.info("Got eval requests") eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests) logging.info("Sorted eval requests") print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests") if len(eval_requests) == 0: print("No eval requests found. Exiting.") return import concurrent.futures def process_eval_request(eval_request): pp.pprint(eval_request) run_eval_suite.run_evaluation( eval_request=eval_request, local_dir=envs.EVAL_RESULTS_PATH_BACKEND, results_repo=envs.RESULTS_REPO, batch_size=1, device=envs.DEVICE, no_cache=True, need_check=False, write_results=False ) logging.info(f"Eval finished for model {eval_request.model}, now setting status to finished") # Update the status to FINISHED manage_requests.set_eval_request( api=envs.API, eval_request=eval_request, new_status=FINISHED_STATUS, hf_repo=envs.QUEUE_REPO, local_dir=envs.EVAL_REQUESTS_PATH_BACKEND ) # 定义线程池的数量 max_workers = 5 # 你可以根据你的需求设置合适的数量 # 使用 ThreadPoolExecutor 来并行执行多个 eval_request with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: futures = [executor.submit(process_eval_request, eval_request) for eval_request in eval_requests] # 等待所有任务完成 concurrent.futures.wait(futures) # for eval_request in eval_requests: # pp.pprint(eval_request) # run_eval_suite.run_evaluation( # eval_request=eval_request, # local_dir=envs.EVAL_RESULTS_PATH_BACKEND, # results_repo=envs.RESULTS_REPO, # batch_size=1, # device=envs.DEVICE, # no_cache=True, # need_check= False, # write_results= False # ) # logging.info(f"Eval finished for model {eval_request.model}, now setting status to finished") # # # Update the status to FINISHED # manage_requests.set_eval_request( # api=envs.API, # eval_request=eval_request, # new_status=FINISHED_STATUS, # hf_repo=envs.QUEUE_REPO, # local_dir=envs.EVAL_REQUESTS_PATH_BACKEND # ) # Searching and filtering def update_table( hidden_df: pd.DataFrame, columns: list, #type_query: list, # precision_query: str, # size_query: list, # show_deleted: bool, query: str, ): # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted) filtered_df = filter_models(hidden_df) filtered_df = filter_queries(query, filtered_df) df = select_columns(filtered_df, columns) return df def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: return df[(df[utils.AutoEvalColumn.dummy.name].str.contains(query, case=False))] def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: always_here_cols = [ #utils.AutoEvalColumn.model_type_symbol.name, utils.AutoEvalColumn.model.name, ] # We use COLS to maintain sorting filtered_df = df[ always_here_cols + [c for c in utils.COLS if c in df.columns and c in columns] + [utils.AutoEvalColumn.dummy.name] ] return filtered_df def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: final_df = [] if query != "": queries = [q.strip() for q in query.split(";")] for _q in queries: _q = _q.strip() if _q != "": temp_filtered_df = search_table(filtered_df, _q) if len(temp_filtered_df) > 0: final_df.append(temp_filtered_df) if len(final_df) > 0: filtered_df = pd.concat(final_df) filtered_df = filtered_df.drop_duplicates( subset=[utils.AutoEvalColumn.model.name, utils.AutoEvalColumn.precision.name, utils.AutoEvalColumn.revision.name] ) return filtered_df def filter_models( # df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool df: pd.DataFrame ) -> pd.DataFrame: # Show all models # if show_deleted: # filtered_df = df # else: # Show only still on the hub models # filtered_df = df[df[utils.AutoEvalColumn.still_on_hub.name]] filtered_df = df # type_emoji = [t[0] for t in type_query] #filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] # filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.precision.name].isin(precision_query + ["None"])] # # numeric_interval = pd.IntervalIndex(sorted([utils.NUMERIC_INTERVALS[s] for s in size_query])) # params_column = pd.to_numeric(df[utils.AutoEvalColumn.params.name], errors="coerce") # mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) # filtered_df = filtered_df.loc[mask] return filtered_df try: demo = gr.Blocks(css=custom_css) with demo: gr.HTML(about.TITLE) gr.Markdown(about.INTRODUCTION_TEXT, elem_classes="markdown-text") def display_animated_radar_chart(): with open("./animated_radar_chart.html", "r") as f: return f.read() with gr.Blocks() as demo: gr.HTML("