Ximena25 commited on
Commit
c14dcf3
·
verified ·
1 Parent(s): f1d0987

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +29 -57
  2. requirements.txt +4 -1
app.py CHANGED
@@ -1,64 +1,36 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
 
 
42
 
 
 
 
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
 
 
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import requests
3
 
4
+ import os
5
+ HF_API_TOKEN = os.getenv("HF_API_TOKEN")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-neo-1.3B"
8
+ headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
9
 
10
+ def accionar_ai(pregunta):
11
+ prompt = f"""
12
+ Eres Accionar AI, un asistente para activistas y colectivos en América Latina. Ayudas a crear campañas sociales con enfoque en justicia, derechos humanos y género.
13
+ Pregunta: {pregunta}
14
+ Sugerencia:
15
  """
16
+ payload = {
17
+ "inputs": prompt,
18
+ "parameters": {"max_new_tokens": 150, "temperature": 0.7},
19
+ }
20
+ response = requests.post(API_URL, headers=headers, json=payload)
21
+ result = response.json()
22
+ if isinstance(result, list):
23
+ return result[0]["generated_text"].split("Sugerencia:")[-1].strip()
24
+ else:
25
+ return "Lo siento, hubo un error al generar la respuesta."
26
+
27
+ # Interfaz Gradio
28
+ demo = gr.Interface(
29
+ fn=accionar_ai,
30
+ inputs=gr.Textbox(lines=3, placeholder="Escribe tu pregunta o idea de campaña"),
31
+ outputs="text",
32
+ title="Accionar AI Commons (Demo real)",
33
+ description="Asistente conectado a modelo GPT-Neo desde Hugging Face",
34
  )
35
 
36
+ demo.launch()
 
 
requirements.txt CHANGED
@@ -1 +1,4 @@
1
- huggingface_hub==0.25.2
 
 
 
 
1
+ gradio
2
+ transformers
3
+ requests
4
+