import gradio as gr import os import time from langchain.document_loaders import OnlinePDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain.llms import OpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain def loading_pdf(): return "加载中...⏳" def pdf_changes(pdf_doc, openai_api_key, chunk_size, chunk_overlap, temperature, return_source): if not openai_api_key: return "你忘记了OpenAI API密钥🗝️" os.environ['OPENAI_API_KEY'] = openai_api_key loader = OnlinePDFLoader(pdf_doc.name) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = Chroma.from_documents(texts, embeddings) retriever = db.as_retriever() global qa qa = ConversationalRetrievalChain.from_llm( llm=OpenAI(temperature=temperature,model="text-davinci-003",max_tokens=1000), retriever=retriever, return_source_documents=return_source) return "准备就绪🚀" def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0], history) history[-1][1] = "" for character in response: history[-1][1] += character time.sleep(0.05) yield history def infer(question, history): res = [] for human, ai in history[:-1]: pair = (human, ai) res.append(pair) chat_history = res query = question result = qa({"question": query, "chat_history": chat_history}) return result["answer"] css=""" #col-container {max-width: 700px; margin-left: auto; margin-right: auto; background-color: #f0f0f0;} """ title = """
上传你的PDF,并将其加载到向量库中,
当一切准备就绪,你就可以开始提出关于pdf的问题了 🧐
此版本使用text-davinci-003作为LLM