Spaces:
Sleeping
Sleeping
File size: 21,394 Bytes
6f4e394 13b45d3 6f4e394 13b45d3 6f4e394 13b45d3 6f4e394 13b45d3 6f4e394 13b45d3 6f4e394 13b45d3 6f4e394 13b45d3 6f4e394 fbfa85f 6f4e394 13b45d3 6f4e394 fbfa85f 6f4e394 fbfa85f 6f4e394 fbfa85f 6f4e394 fbfa85f 6f4e394 fbfa85f 6f4e394 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import os
import sys
import torch
import numpy as np
import gradio as gr
import torchaudio
import torchvision
import spaces
import json
# Add parent directory to path to import preprocess functions
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Import functions from preprocess and model definitions
from preprocess import process_image_data
from evaluate_backbones import WatermelonModelModular, IMAGE_BACKBONES, AUDIO_BACKBONES
# Define the top-performing models based on evaluation
TOP_MODELS = [
{"image_backbone": "efficientnet_b3", "audio_backbone": "transformer"},
{"image_backbone": "efficientnet_b0", "audio_backbone": "transformer"},
{"image_backbone": "resnet50", "audio_backbone": "transformer"}
]
# Define the MoE Model
class WatermelonMoEModel(torch.nn.Module):
def __init__(self, model_configs, model_dir="models", weights=None):
"""
Mixture of Experts model that combines multiple backbone models.
Args:
model_configs: List of dictionaries with 'image_backbone' and 'audio_backbone' keys
model_dir: Directory where model checkpoints are stored
weights: Optional list of weights for each model (None for equal weighting)
"""
super(WatermelonMoEModel, self).__init__()
self.models = torch.nn.ModuleList() # Use ModuleList instead of regular list
self.model_configs = model_configs
# Load each model
loaded_count = 0
for config in model_configs:
img_backbone = config["image_backbone"]
audio_backbone = config["audio_backbone"]
# Initialize model
model = WatermelonModelModular(img_backbone, audio_backbone)
# Load weights
model_path = os.path.join(model_dir, f"{img_backbone}_{audio_backbone}_model.pt")
if os.path.exists(model_path):
print(f"\033[92mINFO\033[0m: Loading model {img_backbone}_{audio_backbone} from {model_path}")
try:
model.load_state_dict(torch.load(model_path, map_location='cpu'))
model.eval() # Set to evaluation mode
self.models.append(model)
loaded_count += 1
except Exception as e:
print(f"\033[91mERR!\033[0m: Failed to load model from {model_path}: {e}")
continue
else:
print(f"\033[91mERR!\033[0m: Model checkpoint not found at {model_path}")
continue
# Add a dummy parameter if no models were loaded to prevent StopIteration
if loaded_count == 0:
print(f"\033[91mERR!\033[0m: No models were successfully loaded!")
self.dummy_param = torch.nn.Parameter(torch.zeros(1))
# Set model weights (uniform by default)
if weights and loaded_count > 0:
assert len(weights) == len(self.models), "Number of weights must match number of models"
self.weights = weights
else:
self.weights = [1.0 / max(loaded_count, 1)] * max(loaded_count, 1)
print(f"\033[92mINFO\033[0m: Loaded {loaded_count} models for MoE ensemble")
print(f"\033[92mINFO\033[0m: Model weights: {self.weights}")
def to(self, device):
"""
Override to() method to ensure all sub-models are moved to the same device
"""
for model in self.models:
model.to(device)
return super(WatermelonMoEModel, self).to(device)
def forward(self, mfcc, image):
"""
Forward pass through the MoE model.
Returns the weighted average of all model outputs.
"""
# Check if we have models loaded
if not self.models:
print(f"\033[91mERR!\033[0m: No models available for inference!")
return torch.tensor([0.0], device=mfcc.device) # Return a default value
outputs = []
# Get outputs from each model
with torch.no_grad():
for i, model in enumerate(self.models):
output = model(mfcc, image)
outputs.append(output * self.weights[i])
# Return weighted average
return torch.sum(torch.stack(outputs), dim=0)
# Modified version of process_audio_data specifically for the app to handle various tensor shapes
def app_process_audio_data(waveform, sample_rate):
"""Modified version of process_audio_data for the app that handles different tensor dimensions"""
try:
print(f"\033[92mDEBUG\033[0m: Processing audio - Initial shape: {waveform.shape}, Sample rate: {sample_rate}")
# Handle different tensor dimensions
if waveform.dim() == 3:
print(f"\033[92mDEBUG\033[0m: Found 3D tensor, converting to 2D")
# For 3D tensor, take the first item (batch dimension)
waveform = waveform[0]
if waveform.dim() == 2:
# Use the first channel for stereo audio
waveform = waveform[0]
print(f"\033[92mDEBUG\033[0m: Using first channel, new shape: {waveform.shape}")
# Resample to 16kHz if needed
resample_rate = 16000
if sample_rate != resample_rate:
print(f"\033[92mDEBUG\033[0m: Resampling from {sample_rate}Hz to {resample_rate}Hz")
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=resample_rate)(waveform)
# Ensure 3 seconds of audio
if waveform.size(0) < 3 * resample_rate:
print(f"\033[92mDEBUG\033[0m: Padding audio from {waveform.size(0)} to {3 * resample_rate} samples")
waveform = torch.nn.functional.pad(waveform, (0, 3 * resample_rate - waveform.size(0)))
else:
print(f"\033[92mDEBUG\033[0m: Trimming audio from {waveform.size(0)} to {3 * resample_rate} samples")
waveform = waveform[: 3 * resample_rate]
# Apply MFCC transformation
print(f"\033[92mDEBUG\033[0m: Applying MFCC transformation")
mfcc_transform = torchaudio.transforms.MFCC(
sample_rate=resample_rate,
n_mfcc=13,
melkwargs={
"n_fft": 256,
"win_length": 256,
"hop_length": 128,
"n_mels": 40,
}
)
mfcc = mfcc_transform(waveform)
print(f"\033[92mDEBUG\033[0m: MFCC output shape: {mfcc.shape}")
return mfcc
except Exception as e:
import traceback
print(f"\033[91mERR!\033[0m: Error in audio processing: {e}")
print(traceback.format_exc())
return None
# Using the decorator for GPU acceleration
@spaces.GPU
def predict_sugar_content(audio, image, model_dir="models", weights=None):
"""Function with GPU acceleration to predict watermelon sugar content in Brix using MoE model"""
try:
# Check CUDA availability inside the GPU-decorated function
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"\033[92mINFO\033[0m: CUDA is available. Using device: {device}")
else:
device = torch.device("cpu")
print(f"\033[92mINFO\033[0m: CUDA is not available. Using device: {device}")
# Load MoE model
moe_model = WatermelonMoEModel(TOP_MODELS, model_dir, weights)
# Explicitly move the entire model to device
moe_model = moe_model.to(device)
moe_model.eval()
print(f"\033[92mINFO\033[0m: Loaded MoE model with {len(moe_model.models)} backbone models")
# Debug information about input types
print(f"\033[92mDEBUG\033[0m: Audio input type: {type(audio)}")
print(f"\033[92mDEBUG\033[0m: Audio input shape/length: {len(audio)}")
print(f"\033[92mDEBUG\033[0m: Image input type: {type(image)}")
if isinstance(image, np.ndarray):
print(f"\033[92mDEBUG\033[0m: Image input shape: {image.shape}")
# Handle different audio input formats
if isinstance(audio, tuple) and len(audio) == 2:
# Standard Gradio format: (sample_rate, audio_data)
sample_rate, audio_data = audio
print(f"\033[92mDEBUG\033[0m: Audio sample rate: {sample_rate}")
print(f"\033[92mDEBUG\033[0m: Audio data shape: {audio_data.shape}")
elif isinstance(audio, tuple) and len(audio) > 2:
# Sometimes Gradio returns (sample_rate, audio_data, other_info...)
sample_rate, audio_data = audio[0], audio[-1]
print(f"\033[92mDEBUG\033[0m: Audio sample rate: {sample_rate}")
print(f"\033[92mDEBUG\033[0m: Audio data shape: {audio_data.shape}")
elif isinstance(audio, str):
# Direct path to audio file
audio_data, sample_rate = torchaudio.load(audio)
print(f"\033[92mDEBUG\033[0m: Loaded audio from path with shape: {audio_data.shape}")
else:
return f"Error: Unsupported audio format. Got {type(audio)}"
# Create a temporary file path for the audio and image
temp_dir = "temp"
os.makedirs(temp_dir, exist_ok=True)
temp_audio_path = os.path.join(temp_dir, "temp_audio.wav")
temp_image_path = os.path.join(temp_dir, "temp_image.jpg")
# Import necessary libraries
from PIL import Image
# Audio handling - direct processing from the data in memory
if isinstance(audio_data, np.ndarray):
# Convert numpy array to tensor
print(f"\033[92mDEBUG\033[0m: Converting numpy audio with shape {audio_data.shape} to tensor")
audio_tensor = torch.tensor(audio_data).float()
# Handle different audio dimensions
if audio_data.ndim == 1:
# Single channel audio
audio_tensor = audio_tensor.unsqueeze(0)
elif audio_data.ndim == 2:
# Ensure channels are first dimension
if audio_data.shape[0] > audio_data.shape[1]:
# More rows than columns, probably (samples, channels)
audio_tensor = torch.tensor(audio_data.T).float()
else:
# Already a tensor
audio_tensor = audio_data.float()
print(f"\033[92mDEBUG\033[0m: Audio tensor shape before processing: {audio_tensor.shape}")
# Skip saving/loading and process directly
mfcc = app_process_audio_data(audio_tensor, sample_rate)
print(f"\033[92mDEBUG\033[0m: MFCC tensor shape after processing: {mfcc.shape if mfcc is not None else None}")
# Image handling
if isinstance(image, np.ndarray):
print(f"\033[92mDEBUG\033[0m: Converting numpy image with shape {image.shape} to PIL")
pil_image = Image.fromarray(image)
pil_image.save(temp_image_path)
print(f"\033[92mDEBUG\033[0m: Saved image to {temp_image_path}")
elif isinstance(image, str):
# If image is already a path
temp_image_path = image
print(f"\033[92mDEBUG\033[0m: Using provided image path: {temp_image_path}")
else:
return f"Error: Unsupported image format. Got {type(image)}"
# Process image
print(f"\033[92mDEBUG\033[0m: Loading and preprocessing image from {temp_image_path}")
image_tensor = torchvision.io.read_image(temp_image_path)
print(f"\033[92mDEBUG\033[0m: Loaded image shape: {image_tensor.shape}")
image_tensor = image_tensor.float()
processed_image = process_image_data(image_tensor)
print(f"\033[92mDEBUG\033[0m: Processed image shape: {processed_image.shape if processed_image is not None else None}")
# Add batch dimension for inference and move to device
if mfcc is not None:
# Ensure mfcc is on the same device as the model
mfcc = mfcc.unsqueeze(0).to(device)
print(f"\033[92mDEBUG\033[0m: Final MFCC shape with batch dimension: {mfcc.shape}, device: {mfcc.device}")
if processed_image is not None:
# Ensure processed_image is on the same device as the model
processed_image = processed_image.unsqueeze(0).to(device)
print(f"\033[92mDEBUG\033[0m: Final image shape with batch dimension: {processed_image.shape}, device: {processed_image.device}")
# Double-check model is on the correct device
print(f"\033[92mDEBUG\033[0m: MoE model device: {next(moe_model.parameters()).device}")
for i, model in enumerate(moe_model.models):
print(f"\033[92mDEBUG\033[0m: Model {i} device: {next(model.parameters()).device}")
# Run inference with MoE model
print(f"\033[92mDEBUG\033[0m: Running inference with MoE model on device: {device}")
if mfcc is not None and processed_image is not None:
with torch.no_grad():
brix_value = moe_model(mfcc, processed_image)
print(f"\033[92mDEBUG\033[0m: Prediction successful: {brix_value.item()}")
else:
return "Error: Failed to process inputs. Please check the debug logs."
# Format the result with a range display
if brix_value is not None:
brix_score = brix_value.item()
# Create a header with the numerical result
result = f"π Predicted Sugar Content: {brix_score:.1f}Β° Brix π\n\n"
# Add extra info about the MoE model
result += "Using Ensemble of Top-3 Models:\n"
result += "- EfficientNet-B3 + Transformer\n"
result += "- EfficientNet-B0 + Transformer\n"
result += "- ResNet-50 + Transformer\n\n"
# Add Brix scale visualization
result += "Sugar Content Scale (in Β°Brix):\n"
result += "ββββββββββββββββββββββββββββββββββ\n"
# Create the scale display with Brix ranges
scale_ranges = [
(0, 8, "Low Sugar (< 8Β° Brix)"),
(8, 9, "Mild Sweetness (8-9Β° Brix)"),
(9, 10, "Medium Sweetness (9-10Β° Brix)"),
(10, 11, "Sweet (10-11Β° Brix)"),
(11, 13, "Very Sweet (11-13Β° Brix)")
]
# Find which category the prediction falls into
user_category = None
for min_val, max_val, category_name in scale_ranges:
if min_val <= brix_score < max_val:
user_category = category_name
break
if brix_score >= scale_ranges[-1][0]: # Handle edge case
user_category = scale_ranges[-1][2]
# Display the scale with the user's result highlighted
for min_val, max_val, category_name in scale_ranges:
if category_name == user_category:
result += f"βΆ {min_val}-{max_val}: {category_name} β (YOUR WATERMELON)\n"
else:
result += f" {min_val}-{max_val}: {category_name}\n"
result += "ββββββββββββββββββββββββββββββββββ\n\n"
# Add assessment of the watermelon's sugar content
if brix_score < 8:
result += "Assessment: This watermelon has low sugar content. It may taste bland or slightly bitter."
elif brix_score < 9:
result += "Assessment: This watermelon has mild sweetness. Acceptable flavor but not very sweet."
elif brix_score < 10:
result += "Assessment: This watermelon has moderate sugar content. It should have pleasant sweetness."
elif brix_score < 11:
result += "Assessment: This watermelon has good sugar content! It should be sweet and juicy."
else:
result += "Assessment: This watermelon has excellent sugar content! Perfect choice for maximum sweetness and flavor."
return result
else:
return "Error: Could not predict sugar content. Please try again with different inputs."
except Exception as e:
import traceback
error_msg = f"Error: {str(e)}\n\n"
error_msg += traceback.format_exc()
print(f"\033[91mERR!\033[0m: {error_msg}")
return error_msg
def create_app(model_dir="models", weights=None):
"""Create and launch the Gradio interface"""
# Define the prediction function with model path
def predict_fn(audio, image):
return predict_sugar_content(audio, image, model_dir, weights)
# Create Gradio interface
with gr.Blocks(title="Watermelon Sugar Content Predictor (MoE)", theme=gr.themes.Soft()) as interface:
gr.Markdown("# π Watermelon Sugar Content Predictor (Ensemble Model)")
gr.Markdown("""
This app predicts the sugar content (in Β°Brix) of a watermelon based on its sound and appearance.
## What's New
This version uses a Mixture of Experts (MoE) ensemble model that combines the three best-performing models:
- EfficientNet-B3 + Transformer
- EfficientNet-B0 + Transformer
- ResNet-50 + Transformer
The ensemble approach provides more accurate predictions than any single model!
## Instructions:
1. Upload or record an audio of tapping the watermelon
2. Upload or capture an image of the watermelon
3. Click 'Predict' to get the sugar content estimation
""")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(label="Upload or Record Audio", type="numpy")
image_input = gr.Image(label="Upload or Capture Image")
submit_btn = gr.Button("Predict Sugar Content", variant="primary")
with gr.Column():
output = gr.Textbox(label="Prediction Results", lines=15)
submit_btn.click(
fn=predict_fn,
inputs=[audio_input, image_input],
outputs=output
)
gr.Markdown("""
## Tips for best results
- For audio: Tap the watermelon with your knuckle and record the sound
- For image: Take a clear photo of the whole watermelon in good lighting
## About Brix Measurement
Brix (Β°Bx) is a measurement of sugar content in a solution. For watermelons, higher Brix values indicate sweeter fruit.
The average ripe watermelon has a Brix value between 9-11Β°.
## About the Mixture of Experts Model
This app uses a Mixture of Experts (MoE) model that combines predictions from multiple neural networks.
Our testing shows the ensemble approach achieves a Mean Absolute Error (MAE) of ~0.22, which is significantly
better than any individual model (best individual model: ~0.36 MAE).
""")
return interface
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Watermelon Sugar Content Prediction App (MoE)")
parser.add_argument(
"--model_dir",
type=str,
default="models",
help="Directory containing the model checkpoints"
)
parser.add_argument(
"--share",
action="store_true",
help="Create a shareable link for the app"
)
parser.add_argument(
"--debug",
action="store_true",
help="Enable verbose debug output"
)
parser.add_argument(
"--weighting",
type=str,
choices=["uniform", "performance"],
default="uniform",
help="How to weight the models (uniform or based on performance)"
)
args = parser.parse_args()
if args.debug:
print(f"\033[92mINFO\033[0m: Debug mode enabled")
# Check if model directory exists
if not os.path.exists(args.model_dir):
print(f"\033[91mERR!\033[0m: Model directory not found at {args.model_dir}")
sys.exit(1)
# Determine weights based on argument
weights = None
if args.weighting == "performance":
# Weights inversely proportional to the MAE (better models get higher weights)
# These are the MAE values from the evaluation results
mae_values = [0.3635, 0.3765, 0.3959] # efficientnet_b3+transformer, efficientnet_b0+transformer, resnet50+transformer
# Convert to weights (inverse of MAE, normalized)
inverse_mae = [1/mae for mae in mae_values]
total = sum(inverse_mae)
weights = [val/total for val in inverse_mae]
print(f"\033[92mINFO\033[0m: Using performance-based weights: {weights}")
else:
print(f"\033[92mINFO\033[0m: Using uniform weights")
# Create and launch the app
app = create_app(args.model_dir, weights)
app.launch(share=args.share) |