XDHDD commited on
Commit
687e655
·
1 Parent(s): d7506cc

Upload 12 files

Browse files
Files changed (12) hide show
  1. LICENSE +400 -0
  2. README.md +191 -8
  3. app (1).py +122 -0
  4. config.py +59 -0
  5. dataset.py +224 -0
  6. gitattributes +5 -0
  7. index.html +139 -0
  8. inference_onnx.py +63 -0
  9. loss.py +145 -0
  10. main.py +131 -0
  11. requirements (1).txt +18 -0
  12. sample.wav +0 -0
LICENSE ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Attribution-NonCommercial 4.0 International
3
+
4
+ =======================================================================
5
+
6
+ Creative Commons Corporation ("Creative Commons") is not a law firm and
7
+ does not provide legal services or legal advice. Distribution of
8
+ Creative Commons public licenses does not create a lawyer-client or
9
+ other relationship. Creative Commons makes its licenses and related
10
+ information available on an "as-is" basis. Creative Commons gives no
11
+ warranties regarding its licenses, any material licensed under their
12
+ terms and conditions, or any related information. Creative Commons
13
+ disclaims all liability for damages resulting from their use to the
14
+ fullest extent possible.
15
+
16
+ Using Creative Commons Public Licenses
17
+
18
+ Creative Commons public licenses provide a standard set of terms and
19
+ conditions that creators and other rights holders may use to share
20
+ original works of authorship and other material subject to copyright
21
+ and certain other rights specified in the public license below. The
22
+ following considerations are for informational purposes only, are not
23
+ exhaustive, and do not form part of our licenses.
24
+
25
+ Considerations for licensors: Our public licenses are
26
+ intended for use by those authorized to give the public
27
+ permission to use material in ways otherwise restricted by
28
+ copyright and certain other rights. Our licenses are
29
+ irrevocable. Licensors should read and understand the terms
30
+ and conditions of the license they choose before applying it.
31
+ Licensors should also secure all rights necessary before
32
+ applying our licenses so that the public can reuse the
33
+ material as expected. Licensors should clearly mark any
34
+ material not subject to the license. This includes other CC-
35
+ licensed material, or material used under an exception or
36
+ limitation to copyright. More considerations for licensors:
37
+ wiki.creativecommons.org/Considerations_for_licensors
38
+
39
+ Considerations for the public: By using one of our public
40
+ licenses, a licensor grants the public permission to use the
41
+ licensed material under specified terms and conditions. If
42
+ the licensor's permission is not necessary for any reason--for
43
+ example, because of any applicable exception or limitation to
44
+ copyright--then that use is not regulated by the license. Our
45
+ licenses grant only permissions under copyright and certain
46
+ other rights that a licensor has authority to grant. Use of
47
+ the licensed material may still be restricted for other
48
+ reasons, including because others have copyright or other
49
+ rights in the material. A licensor may make special requests,
50
+ such as asking that all changes be marked or described.
51
+ Although not required by our licenses, you are encouraged to
52
+ respect those requests where reasonable. More_considerations
53
+ for the public:
54
+ wiki.creativecommons.org/Considerations_for_licensees
55
+
56
+ =======================================================================
57
+
58
+ Creative Commons Attribution-NonCommercial 4.0 International Public
59
+ License
60
+
61
+ By exercising the Licensed Rights (defined below), You accept and agree
62
+ to be bound by the terms and conditions of this Creative Commons
63
+ Attribution-NonCommercial 4.0 International Public License ("Public
64
+ License"). To the extent this Public License may be interpreted as a
65
+ contract, You are granted the Licensed Rights in consideration of Your
66
+ acceptance of these terms and conditions, and the Licensor grants You
67
+ such rights in consideration of benefits the Licensor receives from
68
+ making the Licensed Material available under these terms and
69
+ conditions.
70
+
71
+ Section 1 -- Definitions.
72
+
73
+ a. Adapted Material means material subject to Copyright and Similar
74
+ Rights that is derived from or based upon the Licensed Material
75
+ and in which the Licensed Material is translated, altered,
76
+ arranged, transformed, or otherwise modified in a manner requiring
77
+ permission under the Copyright and Similar Rights held by the
78
+ Licensor. For purposes of this Public License, where the Licensed
79
+ Material is a musical work, performance, or sound recording,
80
+ Adapted Material is always produced where the Licensed Material is
81
+ synched in timed relation with a moving image.
82
+
83
+ b. Adapter's License means the license You apply to Your Copyright
84
+ and Similar Rights in Your contributions to Adapted Material in
85
+ accordance with the terms and conditions of this Public License.
86
+
87
+ c. Copyright and Similar Rights means copyright and/or similar rights
88
+ closely related to copyright including, without limitation,
89
+ performance, broadcast, sound recording, and Sui Generis Database
90
+ Rights, without regard to how the rights are labeled or
91
+ categorized. For purposes of this Public License, the rights
92
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
93
+ Rights.
94
+ d. Effective Technological Measures means those measures that, in the
95
+ absence of proper authority, may not be circumvented under laws
96
+ fulfilling obligations under Article 11 of the WIPO Copyright
97
+ Treaty adopted on December 20, 1996, and/or similar international
98
+ agreements.
99
+
100
+ e. Exceptions and Limitations means fair use, fair dealing, and/or
101
+ any other exception or limitation to Copyright and Similar Rights
102
+ that applies to Your use of the Licensed Material.
103
+
104
+ f. Licensed Material means the artistic or literary work, database,
105
+ or other material to which the Licensor applied this Public
106
+ License.
107
+
108
+ g. Licensed Rights means the rights granted to You subject to the
109
+ terms and conditions of this Public License, which are limited to
110
+ all Copyright and Similar Rights that apply to Your use of the
111
+ Licensed Material and that the Licensor has authority to license.
112
+
113
+ h. Licensor means the individual(s) or entity(ies) granting rights
114
+ under this Public License.
115
+
116
+ i. NonCommercial means not primarily intended for or directed towards
117
+ commercial advantage or monetary compensation. For purposes of
118
+ this Public License, the exchange of the Licensed Material for
119
+ other material subject to Copyright and Similar Rights by digital
120
+ file-sharing or similar means is NonCommercial provided there is
121
+ no payment of monetary compensation in connection with the
122
+ exchange.
123
+
124
+ j. Share means to provide material to the public by any means or
125
+ process that requires permission under the Licensed Rights, such
126
+ as reproduction, public display, public performance, distribution,
127
+ dissemination, communication, or importation, and to make material
128
+ available to the public including in ways that members of the
129
+ public may access the material from a place and at a time
130
+ individually chosen by them.
131
+
132
+ k. Sui Generis Database Rights means rights other than copyright
133
+ resulting from Directive 96/9/EC of the European Parliament and of
134
+ the Council of 11 March 1996 on the legal protection of databases,
135
+ as amended and/or succeeded, as well as other essentially
136
+ equivalent rights anywhere in the world.
137
+
138
+ l. You means the individual or entity exercising the Licensed Rights
139
+ under this Public License. Your has a corresponding meaning.
140
+
141
+ Section 2 -- Scope.
142
+
143
+ a. License grant.
144
+
145
+ 1. Subject to the terms and conditions of this Public License,
146
+ the Licensor hereby grants You a worldwide, royalty-free,
147
+ non-sublicensable, non-exclusive, irrevocable license to
148
+ exercise the Licensed Rights in the Licensed Material to:
149
+
150
+ a. reproduce and Share the Licensed Material, in whole or
151
+ in part, for NonCommercial purposes only; and
152
+
153
+ b. produce, reproduce, and Share Adapted Material for
154
+ NonCommercial purposes only.
155
+
156
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
157
+ Exceptions and Limitations apply to Your use, this Public
158
+ License does not apply, and You do not need to comply with
159
+ its terms and conditions.
160
+
161
+ 3. Term. The term of this Public License is specified in Section
162
+ 6(a).
163
+
164
+ 4. Media and formats; technical modifications allowed. The
165
+ Licensor authorizes You to exercise the Licensed Rights in
166
+ all media and formats whether now known or hereafter created,
167
+ and to make technical modifications necessary to do so. The
168
+ Licensor waives and/or agrees not to assert any right or
169
+ authority to forbid You from making technical modifications
170
+ necessary to exercise the Licensed Rights, including
171
+ technical modifications necessary to circumvent Effective
172
+ Technological Measures. For purposes of this Public License,
173
+ simply making modifications authorized by this Section 2(a)
174
+ (4) never produces Adapted Material.
175
+
176
+ 5. Downstream recipients.
177
+
178
+ a. Offer from the Licensor -- Licensed Material. Every
179
+ recipient of the Licensed Material automatically
180
+ receives an offer from the Licensor to exercise the
181
+ Licensed Rights under the terms and conditions of this
182
+ Public License.
183
+
184
+ b. No downstream restrictions. You may not offer or impose
185
+ any additional or different terms or conditions on, or
186
+ apply any Effective Technological Measures to, the
187
+ Licensed Material if doing so restricts exercise of the
188
+ Licensed Rights by any recipient of the Licensed
189
+ Material.
190
+
191
+ 6. No endorsement. Nothing in this Public License constitutes or
192
+ may be construed as permission to assert or imply that You
193
+ are, or that Your use of the Licensed Material is, connected
194
+ with, or sponsored, endorsed, or granted official status by,
195
+ the Licensor or others designated to receive attribution as
196
+ provided in Section 3(a)(1)(A)(i).
197
+
198
+ b. Other rights.
199
+
200
+ 1. Moral rights, such as the right of integrity, are not
201
+ licensed under this Public License, nor are publicity,
202
+ privacy, and/or other similar personality rights; however, to
203
+ the extent possible, the Licensor waives and/or agrees not to
204
+ assert any such rights held by the Licensor to the limited
205
+ extent necessary to allow You to exercise the Licensed
206
+ Rights, but not otherwise.
207
+
208
+ 2. Patent and trademark rights are not licensed under this
209
+ Public License.
210
+
211
+ 3. To the extent possible, the Licensor waives any right to
212
+ collect royalties from You for the exercise of the Licensed
213
+ Rights, whether directly or through a collecting society
214
+ under any voluntary or waivable statutory or compulsory
215
+ licensing scheme. In all other cases the Licensor expressly
216
+ reserves any right to collect such royalties, including when
217
+ the Licensed Material is used other than for NonCommercial
218
+ purposes.
219
+
220
+ Section 3 -- License Conditions.
221
+
222
+ Your exercise of the Licensed Rights is expressly made subject to the
223
+ following conditions.
224
+
225
+ a. Attribution.
226
+
227
+ 1. If You Share the Licensed Material (including in modified
228
+ form), You must:
229
+
230
+ a. retain the following if it is supplied by the Licensor
231
+ with the Licensed Material:
232
+
233
+ i. identification of the creator(s) of the Licensed
234
+ Material and any others designated to receive
235
+ attribution, in any reasonable manner requested by
236
+ the Licensor (including by pseudonym if
237
+ designated);
238
+
239
+ ii. a copyright notice;
240
+
241
+ iii. a notice that refers to this Public License;
242
+
243
+ iv. a notice that refers to the disclaimer of
244
+ warranties;
245
+
246
+ v. a URI or hyperlink to the Licensed Material to the
247
+ extent reasonably practicable;
248
+
249
+ b. indicate if You modified the Licensed Material and
250
+ retain an indication of any previous modifications; and
251
+
252
+ c. indicate the Licensed Material is licensed under this
253
+ Public License, and include the text of, or the URI or
254
+ hyperlink to, this Public License.
255
+
256
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
257
+ reasonable manner based on the medium, means, and context in
258
+ which You Share the Licensed Material. For example, it may be
259
+ reasonable to satisfy the conditions by providing a URI or
260
+ hyperlink to a resource that includes the required
261
+ information.
262
+
263
+ 3. If requested by the Licensor, You must remove any of the
264
+ information required by Section 3(a)(1)(A) to the extent
265
+ reasonably practicable.
266
+
267
+ 4. If You Share Adapted Material You produce, the Adapter's
268
+ License You apply must not prevent recipients of the Adapted
269
+ Material from complying with this Public License.
270
+
271
+ Section 4 -- Sui Generis Database Rights.
272
+
273
+ Where the Licensed Rights include Sui Generis Database Rights that
274
+ apply to Your use of the Licensed Material:
275
+
276
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
277
+ to extract, reuse, reproduce, and Share all or a substantial
278
+ portion of the contents of the database for NonCommercial purposes
279
+ only;
280
+
281
+ b. if You include all or a substantial portion of the database
282
+ contents in a database in which You have Sui Generis Database
283
+ Rights, then the database in which You have Sui Generis Database
284
+ Rights (but not its individual contents) is Adapted Material; and
285
+
286
+ c. You must comply with the conditions in Section 3(a) if You Share
287
+ all or a substantial portion of the contents of the database.
288
+
289
+ For the avoidance of doubt, this Section 4 supplements and does not
290
+ replace Your obligations under this Public License where the Licensed
291
+ Rights include other Copyright and Similar Rights.
292
+
293
+ Section 5 -- Disclaimer of Warranties and Limitation of Liability.
294
+
295
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
296
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
297
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
298
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
299
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
300
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
301
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
302
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
303
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
304
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
305
+
306
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
307
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
308
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
309
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
310
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
311
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
312
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
313
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
314
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
315
+
316
+ c. The disclaimer of warranties and limitation of liability provided
317
+ above shall be interpreted in a manner that, to the extent
318
+ possible, most closely approximates an absolute disclaimer and
319
+ waiver of all liability.
320
+
321
+ Section 6 -- Term and Termination.
322
+
323
+ a. This Public License applies for the term of the Copyright and
324
+ Similar Rights licensed here. However, if You fail to comply with
325
+ this Public License, then Your rights under this Public License
326
+ terminate automatically.
327
+
328
+ b. Where Your right to use the Licensed Material has terminated under
329
+ Section 6(a), it reinstates:
330
+
331
+ 1. automatically as of the date the violation is cured, provided
332
+ it is cured within 30 days of Your discovery of the
333
+ violation; or
334
+
335
+ 2. upon express reinstatement by the Licensor.
336
+
337
+ For the avoidance of doubt, this Section 6(b) does not affect any
338
+ right the Licensor may have to seek remedies for Your violations
339
+ of this Public License.
340
+
341
+ c. For the avoidance of doubt, the Licensor may also offer the
342
+ Licensed Material under separate terms or conditions or stop
343
+ distributing the Licensed Material at any time; however, doing so
344
+ will not terminate this Public License.
345
+
346
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
347
+ License.
348
+
349
+ Section 7 -- Other Terms and Conditions.
350
+
351
+ a. The Licensor shall not be bound by any additional or different
352
+ terms or conditions communicated by You unless expressly agreed.
353
+
354
+ b. Any arrangements, understandings, or agreements regarding the
355
+ Licensed Material not stated herein are separate from and
356
+ independent of the terms and conditions of this Public License.
357
+
358
+ Section 8 -- Interpretation.
359
+
360
+ a. For the avoidance of doubt, this Public License does not, and
361
+ shall not be interpreted to, reduce, limit, restrict, or impose
362
+ conditions on any use of the Licensed Material that could lawfully
363
+ be made without permission under this Public License.
364
+
365
+ b. To the extent possible, if any provision of this Public License is
366
+ deemed unenforceable, it shall be automatically reformed to the
367
+ minimum extent necessary to make it enforceable. If the provision
368
+ cannot be reformed, it shall be severed from this Public License
369
+ without affecting the enforceability of the remaining terms and
370
+ conditions.
371
+
372
+ c. No term or condition of this Public License will be waived and no
373
+ failure to comply consented to unless expressly agreed to by the
374
+ Licensor.
375
+
376
+ d. Nothing in this Public License constitutes or may be interpreted
377
+ as a limitation upon, or waiver of, any privileges and immunities
378
+ that apply to the Licensor or You, including from the legal
379
+ processes of any jurisdiction or authority.
380
+
381
+ =======================================================================
382
+
383
+ Creative Commons is not a party to its public
384
+ licenses. Notwithstanding, Creative Commons may elect to apply one of
385
+ its public licenses to material it publishes and in those instances
386
+ will be considered the “Licensor.” The text of the Creative Commons
387
+ public licenses is dedicated to the public domain under the CC0 Public
388
+ Domain Dedication. Except for the limited purpose of indicating that
389
+ material is shared under a Creative Commons public license or as
390
+ otherwise permitted by the Creative Commons policies published at
391
+ creativecommons.org/policies, Creative Commons does not authorize the
392
+ use of the trademark "Creative Commons" or any other trademark or logo
393
+ of Creative Commons without its prior written consent including,
394
+ without limitation, in connection with any unauthorized modifications
395
+ to any of its public licenses or any other arrangements,
396
+ understandings, or agreements concerning use of licensed material. For
397
+ the avoidance of doubt, this paragraph does not form part of the
398
+ public licenses.
399
+
400
+ Creative Commons may be contacted at creativecommons.org.
README.md CHANGED
@@ -1,13 +1,196 @@
1
  ---
2
- title: Fckngproj
3
- emoji: 🏃
4
- colorFrom: red
5
- colorTo: yellow
6
  sdk: streamlit
7
- sdk_version: 1.29.0
8
  app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: FRN
3
+ emoji: 📉
4
+ colorFrom: gray
5
+ colorTo: red
6
  sdk: streamlit
7
+ pinned: true
8
  app_file: app.py
9
+ sdk_version: 1.10.0
10
+ python_version: 3.8
11
  ---
12
 
13
+ # FRN - Full-band Recurrent Network Official Implementation
14
+
15
+ **Improving performance of real-time full-band blind packet-loss concealment with predictive network - ICASSP 2023**
16
+
17
+ [![Generic badge](https://img.shields.io/badge/arXiv-2211.04071-brightgreen.svg?style=flat-square)](https://arxiv.org/abs/2211.04071)
18
+ [![Generic badge](https://img.shields.io/github/stars/Crystalsound/FRN?color=yellow&label=FRN&logo=github&style=flat-square)](https://github.com/Crystalsound/FRN/)
19
+ [![Generic badge](https://img.shields.io/github/last-commit/Crystalsound/FRN?color=blue&label=last%20commit&style=flat-square)](https://github.com/Crystalsound/FRN/commits)
20
+
21
+ ## License and citation
22
+
23
+ This repository is released under the CC-BY-NC 4.0. license as found in the LICENSE file.
24
+
25
+ If you use our software, please cite as below.
26
+ For future queries, please contact [[email protected]](mailto:[email protected]).
27
+
28
+ Copyright © 2022 NAMI TECHNOLOGY JSC, Inc. All rights reserved.
29
+
30
+ ```
31
+ @misc{Nguyen2022ImprovingPO,
32
+ title={Improving performance of real-time full-band blind packet-loss concealment with predictive network},
33
+ author={Viet-Anh Nguyen and Anh H. T. Nguyen and Andy W. H. Khong},
34
+ year={2022},
35
+ eprint={2211.04071},
36
+ archivePrefix={arXiv},
37
+ primaryClass={cs.LG}
38
+ }
39
+ ```
40
+
41
+ # 1. Results
42
+
43
+ Our model achieved a significant gain over baselines. Here, we include the predicted packet loss concealment
44
+ mean-opinion-score (PLCMOS) using Microsoft's [PLCMOS](https://github.com/microsoft/PLC-Challenge/tree/main/PLCMOS)
45
+ service. Please refer to our paper for more benchmarks.
46
+
47
+ | Model | PLCMOS |
48
+ |---------|-----------|
49
+ | Input | 3.517 |
50
+ | tPLC | 3.463 |
51
+ | TFGAN | 3.645 |
52
+ | **FRN** | **3.655** |
53
+
54
+ We also provide several audio samples in [https://crystalsound.github.io/FRN/](https://crystalsound.github.io/FRN/) for
55
+ comparison.
56
+
57
+ # 2. Installation
58
+
59
+ ## Setup
60
+
61
+ ### Clone the repo
62
+
63
+ ```
64
+ $ git clone https://github.com/Crystalsound/FRN.git
65
+ $ cd FRN
66
+ ```
67
+
68
+ ### Install dependencies
69
+
70
+ * Our implementation requires the `libsndfile` libraries for the Python packages `soundfile`. On Ubuntu, they can be
71
+ easily installed using `apt-get`:
72
+ ```
73
+ $ apt-get update && apt-get install libsndfile-dev
74
+ ```
75
+ * Create a Python 3.8 environment. Conda is recommended:
76
+ ```
77
+ $ conda create -n frn python=3.8
78
+ $ conda activate frn
79
+ ```
80
+
81
+ * Install the requirements:
82
+ ```
83
+ $ pip install -r requirements.txt
84
+ ```
85
+
86
+ # 3. Data preparation
87
+
88
+ In our paper, we conduct experiments on the [VCTK](https://datashare.ed.ac.uk/handle/10283/3443) dataset.
89
+
90
+ * Download and extract the datasets:
91
+ ```
92
+ $ wget http://www.udialogue.org/download/VCTK-Corpus.tar.gz -O data/vctk/VCTK-Corpus.tar.gz
93
+ $ tar -zxvf data/vctk/VCTK-Corpus.tar.gz -C data/vctk/ --strip-components=1
94
+ ```
95
+
96
+ After extracting the datasets, your `./data` directory should look like this:
97
+
98
+ ```
99
+ .
100
+ |--data
101
+ |--vctk
102
+ |--wav48
103
+ |--p225
104
+ |--p225_001.wav
105
+ ...
106
+ |--train.txt
107
+ |--test.txt
108
+ ```
109
+ * In order to load the datasets, text files that contain training and testing audio paths are required. We have
110
+ prepared `train.txt` and `test.txt` files in `./data/vctk` directory.
111
+
112
+ # 4. Run the code
113
+
114
+ ## Configuration
115
+
116
+ `config.py` is the most important file. Here, you can find all the configurations related to experiment setups,
117
+ datasets, models, training, testing, etc. Although the config file has been explained thoroughly, we recommend reading
118
+ our paper to fully understand each parameter.
119
+
120
+ ## Training
121
+
122
+ * Adjust training hyperparameters in `config.py`. We provide the pretrained predictor in `lightning_logs/predictor` as stated in our paper. The FRN model can be trained entirely from scratch and will work as well. In this case, initiate `PLCModel(..., pred_ckpt_path=None)`.
123
+
124
+ * Run `main.py`:
125
+ ```
126
+ $ python main.py --mode train
127
+ ```
128
+ * Each run will create a version in `./lightning_logs`, where the model checkpoint and hyperparameters are saved. In
129
+ case you want to continue training from one of these versions, just set the argument `--version` of the above command
130
+ to your desired version number. For example:
131
+ ```
132
+ # resume from version 0
133
+ $ python main.py --mode train --version 0
134
+ ```
135
+ * To monitor the training curves as well as inspect model output visualization, run the tensorboard:
136
+ ```
137
+ $ tensorboard --logdir=./lightning_logs --bind_all
138
+ ```
139
+ ![image.png](https://images.viblo.asia/eb2246f9-2747-43b9-8f78-d6c154144716.png)
140
+
141
+ ## Evaluation
142
+
143
+ In our paper, we evaluated with 2 masking methods: simulation using Markov Chain and employing real traces in PLC
144
+ Challenge.
145
+
146
+ * Get the blind test set with loss traces:
147
+ ```
148
+ $ wget http://plcchallenge2022pub.blob.core.windows.net/plcchallengearchive/blind.tar.gz
149
+ $ tar -xvf blind.tar.gz -C test_samples
150
+ ```
151
+ * Modify `config.py` to change evaluation setup if necessary.
152
+ * Run `main.py` with a version number to be evaluated:
153
+ ```
154
+ $ python main.py --mode eval --version 0
155
+ ```
156
+ During the evaluation, several output samples are saved to `CONFIG.LOG.sample_path` for sanity testing.
157
+
158
+ ## Configure a new dataset
159
+
160
+ Our implementation currently works with the VCTK dataset but can be easily extensible to a new one.
161
+
162
+ * Firstly, you need to prepare `train.txt` and `test.txt`. See `./data/vctk/train.txt` and `./data/vctk/test.txt` for
163
+ example.
164
+ * Secondly, add a new dictionary to `CONFIG.DATA.data_dir`:
165
+ ```
166
+ {
167
+ 'root': 'path/to/data/directory',
168
+ 'train': 'path/to/train.txt',
169
+ 'test': 'path/to/test.txt'
170
+ }
171
+ ```
172
+ **Important:** Make sure each line in `train.txt` and `test.txt` joining with `'root'` is a valid path to its
173
+ corresponding audio file.
174
+
175
+ # 5. Audio generation
176
+
177
+ * In order to generate output audios, you need to modify `CONFIG.TEST.in_dir` to your input directory.
178
+ * Run `main.py`:
179
+ ```
180
+ python main.py --mode test --version 0
181
+ ```
182
+ The generated audios are saved to `CONFIG.TEST.out_dir`.
183
+
184
+ ## ONNX inferencing
185
+ We provide ONNX inferencing scripts and the best ONNX model (converted from the best checkpoint)
186
+ at `lightning_logs/best_model.onnx`.
187
+ * Convert a checkpoint to an ONNX model:
188
+ ```
189
+ python main.py --mode onnx --version 0
190
+ ```
191
+ The converted ONNX model will be saved to `lightning_logs/version_0/checkpoints`.
192
+ * Put test audios in `test_samples` and inference with the converted ONNX model (see `inference_onnx.py` for more
193
+ details):
194
+ ```
195
+ python inference_onnx.py --onnx_path lightning_logs/version_0/frn.onnx
196
+ ```
app (1).py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import librosa
3
+ import soundfile as sf
4
+ import librosa.display
5
+ from config import CONFIG
6
+ import torch
7
+ from dataset import MaskGenerator
8
+ import onnxruntime, onnx
9
+ import matplotlib.pyplot as plt
10
+ import numpy as np
11
+ from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
12
+
13
+ @st.cache
14
+ def load_model():
15
+ path = 'lightning_logs/version_0/checkpoints/frn.onnx'
16
+ onnx_model = onnx.load(path)
17
+ options = onnxruntime.SessionOptions()
18
+ options.intra_op_num_threads = 2
19
+ options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
20
+ session = onnxruntime.InferenceSession(path, options)
21
+ input_names = [x.name for x in session.get_inputs()]
22
+ output_names = [x.name for x in session.get_outputs()]
23
+ return session, onnx_model, input_names, output_names
24
+
25
+ def inference(re_im, session, onnx_model, input_names, output_names):
26
+ inputs = {input_names[i]: np.zeros([d.dim_value for d in _input.type.tensor_type.shape.dim],
27
+ dtype=np.float32)
28
+ for i, _input in enumerate(onnx_model.graph.input)
29
+ }
30
+
31
+ output_audio = []
32
+ for t in range(re_im.shape[0]):
33
+ inputs[input_names[0]] = re_im[t]
34
+ out, prev_mag, predictor_state, mlp_state = session.run(output_names, inputs)
35
+ inputs[input_names[1]] = prev_mag
36
+ inputs[input_names[2]] = predictor_state
37
+ inputs[input_names[3]] = mlp_state
38
+ output_audio.append(out)
39
+
40
+ output_audio = torch.tensor(np.concatenate(output_audio, 0))
41
+ output_audio = output_audio.permute(1, 0, 2).contiguous()
42
+ output_audio = torch.view_as_complex(output_audio)
43
+ output_audio = torch.istft(output_audio, window, stride, window=hann)
44
+ return output_audio.numpy()
45
+
46
+ def visualize(hr, lr, recon):
47
+ sr = CONFIG.DATA.sr
48
+ window_size = 1024
49
+ window = np.hanning(window_size)
50
+
51
+ stft_hr = librosa.core.spectrum.stft(hr, n_fft=window_size, hop_length=512, window=window)
52
+ stft_hr = 2 * np.abs(stft_hr) / np.sum(window)
53
+
54
+ stft_lr = librosa.core.spectrum.stft(lr, n_fft=window_size, hop_length=512, window=window)
55
+ stft_lr = 2 * np.abs(stft_lr) / np.sum(window)
56
+
57
+ stft_recon = librosa.core.spectrum.stft(recon, n_fft=window_size, hop_length=512, window=window)
58
+ stft_recon = 2 * np.abs(stft_recon) / np.sum(window)
59
+
60
+ fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharey=True, sharex=True, figsize=(16, 10))
61
+ ax1.title.set_text('Target signal')
62
+ ax2.title.set_text('Lossy signal')
63
+ ax3.title.set_text('Enhanced signal')
64
+
65
+ canvas = FigureCanvas(fig)
66
+ p = librosa.display.specshow(librosa.amplitude_to_db(stft_hr), ax=ax1, y_axis='linear', x_axis='time', sr=sr)
67
+ p = librosa.display.specshow(librosa.amplitude_to_db(stft_lr), ax=ax2, y_axis='linear', x_axis='time', sr=sr)
68
+ p = librosa.display.specshow(librosa.amplitude_to_db(stft_recon), ax=ax3, y_axis='linear', x_axis='time', sr=sr)
69
+ return fig
70
+
71
+ packet_size = CONFIG.DATA.EVAL.packet_size
72
+ window = CONFIG.DATA.window_size
73
+ stride = CONFIG.DATA.stride
74
+
75
+ title = 'Packet Loss Concealment'
76
+ st.set_page_config(page_title=title, page_icon=":sound:")
77
+ st.title(title)
78
+
79
+ st.subheader('Upload audio')
80
+ uploaded_file = st.file_uploader("Upload your audio file (.wav) at 48 kHz sampling rate")
81
+
82
+ is_file_uploaded = uploaded_file is not None
83
+ if not is_file_uploaded:
84
+ uploaded_file = 'sample.wav'
85
+
86
+ target, sr = librosa.load(uploaded_file, sr=48000)
87
+ target = target[:packet_size * (len(target) // packet_size)]
88
+
89
+ st.text('Audio sample')
90
+ st.audio(uploaded_file)
91
+
92
+ st.subheader('Choose expected packet loss rate')
93
+ slider = [st.slider("Expected loss rate for Markov Chain loss generator", 0, 100, step=1)]
94
+ loss_percent = float(slider[0])/100
95
+ mask_gen = MaskGenerator(is_train=False, probs=[(1 - loss_percent, loss_percent)])
96
+ lossy_input = target.copy().reshape(-1, packet_size)
97
+ mask = mask_gen.gen_mask(len(lossy_input), seed=0)[:, np.newaxis]
98
+ lossy_input *= mask
99
+ lossy_input = lossy_input.reshape(-1)
100
+ hann = torch.sqrt(torch.hann_window(window))
101
+ lossy_input_tensor = torch.tensor(lossy_input)
102
+ re_im = torch.stft(lossy_input_tensor, window, stride, window=hann, return_complex=False).permute(1, 0, 2).unsqueeze(
103
+ 1).numpy().astype(np.float32)
104
+ session, onnx_model, input_names, output_names = load_model()
105
+
106
+ if st.button('Conceal lossy audio!'):
107
+ with st.spinner('Please wait for completion'):
108
+ output = inference(re_im, session, onnx_model, input_names, output_names)
109
+
110
+ st.subheader('Visualization')
111
+ fig = visualize(target, lossy_input, output)
112
+ st.pyplot(fig)
113
+ st.success('Done!')
114
+ sf.write('target.wav', target, sr)
115
+ sf.write('lossy.wav', lossy_input, sr)
116
+ sf.write('enhanced.wav', output, sr)
117
+ st.text('Original audio')
118
+ st.audio('target.wav')
119
+ st.text('Lossy audio')
120
+ st.audio('lossy.wav')
121
+ st.text('Enhanced audio')
122
+ st.audio('enhanced.wav')
config.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class CONFIG:
2
+ gpus = "0,1" # List of gpu devices
3
+
4
+ class TRAIN:
5
+ batch_size = 90 # number of audio files per batch
6
+ lr = 1e-4 # learning rate
7
+ epochs = 150 # max training epochs
8
+ workers = 12 # number of dataloader workers
9
+ val_split = 0.1 # validation set proportion
10
+ clipping_val = 1.0 # gradient clipping value
11
+ patience = 3 # learning rate scheduler's patience
12
+ factor = 0.5 # learning rate reduction factor
13
+
14
+ # Model config
15
+ class MODEL:
16
+ enc_layers = 4 # number of MLP blocks in the encoder
17
+ enc_in_dim = 384 # dimension of the input projection layer in the encoder
18
+ enc_dim = 768 # dimension of the MLP blocks
19
+ pred_dim = 512 # dimension of the LSTM in the predictor
20
+ pred_layers = 1 # number of LSTM layers in the predictor
21
+
22
+ # Dataset config
23
+ class DATA:
24
+ dataset = 'vctk' # dataset to use
25
+ '''
26
+ Dictionary that specifies paths to root directories and train/test text files of each datasets.
27
+ 'root' is the path to the dataset and each line of the train.txt/test.txt files should contains the path to an
28
+ audio file from 'root'.
29
+ '''
30
+ data_dir = {'vctk': {'root': 'data/vctk/wav48',
31
+ 'train': "data/vctk/train.txt",
32
+ 'test': "data/vctk/test.txt"},
33
+ }
34
+
35
+ assert dataset in data_dir.keys(), 'Unknown dataset.'
36
+ sr = 48000 # audio sampling rate
37
+ audio_chunk_len = 122880 # size of chunk taken in each audio files
38
+ window_size = 960 # window size of the STFT operation, equivalent to packet size
39
+ stride = 480 # stride of the STFT operation
40
+
41
+ class TRAIN:
42
+ packet_sizes = [256, 512, 768, 960, 1024,
43
+ 1536] # packet sizes for training. All sizes should be divisible by 'audio_chunk_len'
44
+ transition_probs = ((0.9, 0.1), (0.5, 0.1), (0.5, 0.5)) # list of trainsition probs for Markow Chain
45
+
46
+ class EVAL:
47
+ packet_size = 960 # 20ms
48
+ transition_probs = [(0.9, 0.1)] # (0.9, 0.1) ~ 10%; (0.8, 0.2) ~ 20%; (0.6, 0.4) ~ 40%
49
+ masking = 'gen' # whether using simulation or real traces from Microsoft to generate masks
50
+ assert masking in ['gen', 'real']
51
+ trace_path = 'test_samples/blind/lossy_singals' # must be clarified if masking = 'real'
52
+
53
+ class LOG:
54
+ log_dir = 'lightning_logs' # checkpoint and log directory
55
+ sample_path = 'audio_samples' # path to save generated audio samples in evaluation.
56
+
57
+ class TEST:
58
+ in_dir = 'test_samples/blind/lossy_signals' # path to test audio inputs
59
+ out_dir = 'test_samples/blind/lossy_signals_out' # path to generated outputs
dataset.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import os
3
+ import random
4
+
5
+ import librosa
6
+ import numpy as np
7
+ import soundfile as sf
8
+ import torch
9
+ from numpy.random import default_rng
10
+ from pydtmc import MarkovChain
11
+ from sklearn.model_selection import train_test_split
12
+ from torch.utils.data import Dataset
13
+
14
+ from config import CONFIG
15
+
16
+ np.random.seed(0)
17
+ rng = default_rng()
18
+
19
+
20
+ def load_audio(
21
+ path,
22
+ sample_rate: int = 16000,
23
+ chunk_len=None,
24
+ ):
25
+ with sf.SoundFile(path) as f:
26
+ sr = f.samplerate
27
+ audio_len = f.frames
28
+
29
+ if chunk_len is not None and chunk_len < audio_len:
30
+ start_index = torch.randint(0, audio_len - chunk_len, (1,))[0]
31
+
32
+ frames = f._prepare_read(start_index, start_index + chunk_len, -1)
33
+ audio = f.read(frames, always_2d=True, dtype="float32")
34
+
35
+ else:
36
+ audio = f.read(always_2d=True, dtype="float32")
37
+
38
+ if sr != sample_rate:
39
+ audio = librosa.resample(np.squeeze(audio), sr, sample_rate)[:, np.newaxis]
40
+
41
+ return audio.T
42
+
43
+
44
+ def pad(sig, length):
45
+ if sig.shape[1] < length:
46
+ pad_len = length - sig.shape[1]
47
+ sig = torch.hstack((sig, torch.zeros((sig.shape[0], pad_len))))
48
+
49
+ else:
50
+ start = random.randint(0, sig.shape[1] - length)
51
+ sig = sig[:, start:start + length]
52
+ return sig
53
+
54
+
55
+ class MaskGenerator:
56
+ def __init__(self, is_train=True, probs=((0.9, 0.1), (0.5, 0.1), (0.5, 0.5))):
57
+ '''
58
+ is_train: if True, mask generator for training otherwise for evaluation
59
+ probs: a list of transition probability (p_N, p_L) for Markov Chain. Only allow 1 tuple if 'is_train=False'
60
+ '''
61
+ self.is_train = is_train
62
+ self.probs = probs
63
+ self.mcs = []
64
+ if self.is_train:
65
+ for prob in probs:
66
+ self.mcs.append(MarkovChain([[prob[0], 1 - prob[0]], [1 - prob[1], prob[1]]], ['1', '0']))
67
+ else:
68
+ assert len(probs) == 1
69
+ prob = self.probs[0]
70
+ self.mcs.append(MarkovChain([[prob[0], 1 - prob[0]], [1 - prob[1], prob[1]]], ['1', '0']))
71
+
72
+ def gen_mask(self, length, seed=0):
73
+ if self.is_train:
74
+ mc = random.choice(self.mcs)
75
+ else:
76
+ mc = self.mcs[0]
77
+ mask = mc.walk(length - 1, seed=seed)
78
+ mask = np.array(list(map(int, mask)))
79
+ return mask
80
+
81
+
82
+ class TestLoader(Dataset):
83
+ def __init__(self):
84
+ dataset_name = CONFIG.DATA.dataset
85
+ self.mask = CONFIG.DATA.EVAL.masking
86
+
87
+ self.target_root = CONFIG.DATA.data_dir[dataset_name]['root']
88
+ txt_list = CONFIG.DATA.data_dir[dataset_name]['test']
89
+ self.data_list = self.load_txt(txt_list)
90
+ if self.mask == 'real':
91
+ trace_txt = glob.glob(os.path.join(CONFIG.DATA.EVAL.trace_path, '*.txt'))
92
+ trace_txt.sort()
93
+ self.trace_list = [1 - np.array(list(map(int, open(txt, 'r').read().strip('\n').split('\n')))) for txt in
94
+ trace_txt]
95
+ else:
96
+ self.mask_generator = MaskGenerator(is_train=False, probs=CONFIG.DATA.EVAL.transition_probs)
97
+
98
+ self.sr = CONFIG.DATA.sr
99
+ self.stride = CONFIG.DATA.stride
100
+ self.window_size = CONFIG.DATA.window_size
101
+ self.audio_chunk_len = CONFIG.DATA.audio_chunk_len
102
+ self.p_size = CONFIG.DATA.EVAL.packet_size # 20ms
103
+ self.hann = torch.sqrt(torch.hann_window(self.window_size))
104
+
105
+ def __len__(self):
106
+ return len(self.data_list)
107
+
108
+ def load_txt(self, txt_list):
109
+ target = []
110
+ with open(txt_list) as f:
111
+ for line in f:
112
+ target.append(os.path.join(self.target_root, line.strip('\n')))
113
+ target = list(set(target))
114
+ target.sort()
115
+ return target
116
+
117
+ def __getitem__(self, index):
118
+ target = load_audio(self.data_list[index], sample_rate=self.sr)
119
+ target = target[:, :(target.shape[1] // self.p_size) * self.p_size]
120
+
121
+ sig = np.reshape(target, (-1, self.p_size)).copy()
122
+ if self.mask == 'real':
123
+ mask = self.trace_list[index % len(self.trace_list)]
124
+ mask = np.repeat(mask, np.ceil(len(sig) / len(mask)), 0)[:len(sig)][:, np.newaxis]
125
+ else:
126
+ mask = self.mask_generator.gen_mask(len(sig), seed=index)[:, np.newaxis]
127
+ sig *= mask
128
+ sig = torch.tensor(sig).reshape(-1)
129
+
130
+ target = torch.tensor(target).squeeze(0)
131
+
132
+ sig_wav = sig.clone()
133
+ target_wav = target.clone()
134
+
135
+ target = torch.stft(target, self.window_size, self.stride, window=self.hann,
136
+ return_complex=False).permute(2, 0, 1)
137
+ sig = torch.stft(sig, self.window_size, self.stride, window=self.hann, return_complex=False).permute(2, 0, 1)
138
+ return sig.float(), target.float(), sig_wav, target_wav
139
+
140
+
141
+ class BlindTestLoader(Dataset):
142
+ def __init__(self, test_dir):
143
+ self.data_list = glob.glob(os.path.join(test_dir, '*.wav'))
144
+ self.sr = CONFIG.DATA.sr
145
+ self.stride = CONFIG.DATA.stride
146
+ self.chunk_len = CONFIG.DATA.window_size
147
+ self.hann = torch.sqrt(torch.hann_window(self.chunk_len))
148
+
149
+ def __len__(self):
150
+ return len(self.data_list)
151
+
152
+ def __getitem__(self, index):
153
+ sig = load_audio(self.data_list[index], sample_rate=self.sr)
154
+ sig = torch.from_numpy(sig).squeeze(0)
155
+ sig = torch.stft(sig, self.chunk_len, self.stride, window=self.hann, return_complex=False).permute(2, 0, 1)
156
+ return sig.float()
157
+
158
+
159
+ class TrainDataset(Dataset):
160
+
161
+ def __init__(self, mode='train'):
162
+ dataset_name = CONFIG.DATA.dataset
163
+ self.target_root = CONFIG.DATA.data_dir[dataset_name]['root']
164
+
165
+ txt_list = CONFIG.DATA.data_dir[dataset_name]['train']
166
+ self.data_list = self.load_txt(txt_list)
167
+
168
+ if mode == 'train':
169
+ self.data_list, _ = train_test_split(self.data_list, test_size=CONFIG.TRAIN.val_split, random_state=0)
170
+
171
+ elif mode == 'val':
172
+ _, self.data_list = train_test_split(self.data_list, test_size=CONFIG.TRAIN.val_split, random_state=0)
173
+
174
+ self.p_sizes = CONFIG.DATA.TRAIN.packet_sizes
175
+ self.mode = mode
176
+ self.sr = CONFIG.DATA.sr
177
+ self.window = CONFIG.DATA.audio_chunk_len
178
+ self.stride = CONFIG.DATA.stride
179
+ self.chunk_len = CONFIG.DATA.window_size
180
+ self.hann = torch.sqrt(torch.hann_window(self.chunk_len))
181
+ self.mask_generator = MaskGenerator(is_train=True, probs=CONFIG.DATA.TRAIN.transition_probs)
182
+
183
+ def __len__(self):
184
+ return len(self.data_list)
185
+
186
+ def load_txt(self, txt_list):
187
+ target = []
188
+ with open(txt_list) as f:
189
+ for line in f:
190
+ target.append(os.path.join(self.target_root, line.strip('\n')))
191
+ target = list(set(target))
192
+ target.sort()
193
+ return target
194
+
195
+ def fetch_audio(self, index):
196
+ sig = load_audio(self.data_list[index], sample_rate=self.sr, chunk_len=self.window)
197
+ while sig.shape[1] < self.window:
198
+ idx = torch.randint(0, len(self.data_list), (1,))[0]
199
+ pad_len = self.window - sig.shape[1]
200
+ if pad_len < 0.02 * self.sr:
201
+ padding = np.zeros((1, pad_len), dtype=np.float)
202
+ else:
203
+ padding = load_audio(self.data_list[idx], sample_rate=self.sr, chunk_len=pad_len)
204
+ sig = np.hstack((sig, padding))
205
+ return sig
206
+
207
+ def __getitem__(self, index):
208
+ sig = self.fetch_audio(index)
209
+
210
+ sig = sig.reshape(-1).astype(np.float32)
211
+
212
+ target = torch.tensor(sig.copy())
213
+ p_size = random.choice(self.p_sizes)
214
+
215
+ sig = np.reshape(sig, (-1, p_size))
216
+ mask = self.mask_generator.gen_mask(len(sig), seed=index)[:, np.newaxis]
217
+ sig *= mask
218
+ sig = torch.tensor(sig.copy()).reshape(-1)
219
+
220
+ target = torch.stft(target, self.chunk_len, self.stride, window=self.hann,
221
+ return_complex=False).permute(2, 0, 1).float()
222
+ sig = torch.stft(sig, self.chunk_len, self.stride, window=self.hann, return_complex=False)
223
+ sig = sig.permute(2, 0, 1).float()
224
+ return sig, target
gitattributes ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ lightning_logs/version_0/checkpoints/frn-epoch=65-val_loss=0.2290.ckpt filter=lfs diff=lfs merge=lfs -text
2
+ lightning_logs/version_0/checkpoints/frn.onnx filter=lfs diff=lfs merge=lfs -text
3
+ lightning_logs/predictor/checkpoints/predictor.ckpt filter=lfs diff=lfs merge=lfs -text
4
+ *.onnx filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
index.html ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html>
3
+ <head>
4
+ <link href="css/styles.css" rel="stylesheet">
5
+
6
+ <title>Full-band Recurrent Network</title>
7
+ </head>
8
+ <body>
9
+ <nav>
10
+ <ul>
11
+ <!-- <li><a href="/">Home</a></li> -->
12
+ <li><a href="https://github.com/Crystalsound/FRN/">Github</a></li>
13
+ <li><a href="https://arxiv.org/abs/2211.04071">Arxiv</a></li>
14
+ <li><a href="https://www.namitech.io/">Website</a></li>
15
+ </ul>
16
+ </nav>
17
+ <div class=”container”>
18
+ <div class=”blurb”>
19
+ <h1>Audio samples</h1>
20
+ <p><b>Improving performance of real-time full-band blind packet-loss concealment with predictive network</b></a>
21
+ </p>
22
+ <p><i>Viet-Anh Nguyen<sup>1</sup>, Anh H. T. Nguyen<sup>1</sup>, and Andy W. H. Khong<sup>2</sup></i>
23
+ <br><sup>1</sup>Crystalsound Team, NamiTech JSC, Ho Chi Minh City, Vietnam
24
+ <br><sup>2</sup>Nanyang Technological University, Singapore
25
+ <br><TT>{vietanh.nguyen, anh.nguyen}@namitech.io, [email protected]
26
+ </div>
27
+ </div>
28
+ <h3> Audio samples of our full-band recurrent network (FRN) versus TFGAN and tPLCNet for blind packet loss concealment
29
+ (PLC)</h3>
30
+ Audio files are at 48 kHz sampling rate with packet size of 20 ms. Our FRN is a causal and blind PLC model while TFGAN
31
+ is non-causal and tPLC is an informed PLC model.
32
+ <br> </br>
33
+ <table>
34
+ <thead>
35
+ <tr>
36
+ <th align="middle">Clean target</th>
37
+ <th align="middle">Lossy input</th>
38
+ <th align="middle">TFGAN</th>
39
+ <th align="middle">tPLCNet</th>
40
+ <th align="middle">FRN (Ours)</th>
41
+ </tr>
42
+ </thead>
43
+
44
+ <tbody>
45
+ <tr>
46
+ <td>
47
+ <audio controls style="width: 250px; height: 50px">
48
+ <source src="audio_samples/sample_1/clean.wav" type="audio/wav">
49
+ </audio>
50
+ </td>
51
+ <td>
52
+ <audio controls style="width: 250px; height: 50px">
53
+ <source src="audio_samples/sample_1/lossy.wav" type="audio/wav">
54
+ </audio>
55
+ </td>
56
+ <td>
57
+ <audio controls style="width: 250px; height: 50px">
58
+ <source src="audio_samples/sample_1/TFGAN_enhanced.wav" type="audio/wav">
59
+ </audio>
60
+ </td>
61
+ <td>
62
+ <audio controls style="width: 250px; height: 50px">
63
+ <source src="audio_samples/sample_1/tPLC_enhanced.wav" type="audio/wav">
64
+ </audio>
65
+ </td>
66
+ <td>
67
+ <audio controls style="width: 250px; height: 50px">
68
+ <source src="audio_samples/sample_1/FRN_enhanced.wav" type="audio/wav">
69
+ </audio>
70
+ </td>
71
+ </tr>
72
+
73
+ <tr>
74
+ <td>
75
+ <audio controls style="width: 250px; height: 50px">
76
+ <source src="audio_samples/sample_2/clean.wav" type="audio/wav">
77
+ </audio>
78
+ </td>
79
+ <td>
80
+ <audio controls style="width: 250px; height: 50px">
81
+ <source src="audio_samples/sample_2/lossy.wav" type="audio/wav">
82
+ </audio>
83
+ </td>
84
+ <td>
85
+ <audio controls style="width: 250px; height: 50px">
86
+ <source src="audio_samples/sample_2/TFGAN_enhanced.wav" type="audio/wav">
87
+ </audio>
88
+ </td>
89
+ <td>
90
+ <audio controls style="width: 250px; height: 50px">
91
+ <source src="audio_samples/sample_2/tPLC_enhanced.wav" type="audio/wav">
92
+ </audio>
93
+ </td>
94
+ <td>
95
+ <audio controls style="width: 250px; height: 50px">
96
+ <source src="audio_samples/sample_2/FRN_enhanced.wav" type="audio/wav">
97
+ </audio>
98
+ </td>
99
+ </tr>
100
+
101
+ <tr>
102
+ <td>
103
+ <audio controls style="width: 250px; height: 50px">
104
+ <source src="audio_samples/sample_3/clean.wav" type="audio/wav">
105
+ </audio>
106
+ </td>
107
+ <td>
108
+ <audio controls style="width: 250px; height: 50px">
109
+ <source src="audio_samples/sample_3/lossy.wav" type="audio/wav">
110
+ </audio>
111
+ </td>
112
+ <td>
113
+ <audio controls style="width: 250px; height: 50px">
114
+ <source src="audio_samples/sample_3/TFGAN_enhanced.wav" type="audio/wav">
115
+ </audio>
116
+ </td>
117
+ <td>
118
+ <audio controls style="width: 250px; height: 50px">
119
+ <source src="audio_samples/sample_3/tPLC_enhanced.wav" type="audio/wav">
120
+ </audio>
121
+ </td>
122
+ <td>
123
+ <audio controls style="width: 250px; height: 50px">
124
+ <source src="audio_samples/sample_3/FRN_enhanced.wav" type="audio/wav">
125
+ </audio>
126
+ </td>
127
+ </tr>
128
+
129
+
130
+ </tbody>
131
+ </table>
132
+ <!-- <footer>
133
+ <ul>
134
+ <li><a href=”mailto:YOUREMAIL”>YOUREMAIL</a></li>
135
+ </ul>
136
+ </footer> -->
137
+
138
+ </body>
139
+ </html>
inference_onnx.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import os
4
+
5
+ import librosa
6
+ import numpy as np
7
+ import onnx
8
+ import onnxruntime
9
+ import soundfile as sf
10
+ import torch
11
+ import tqdm
12
+
13
+ from config import CONFIG
14
+
15
+ parser = argparse.ArgumentParser()
16
+
17
+ parser.add_argument('--onnx_path', default=None,
18
+ help='path to onnx')
19
+ args = parser.parse_args()
20
+
21
+ if __name__ == '__main__':
22
+ path = args.onnx_path
23
+ window = CONFIG.DATA.window_size
24
+ stride = CONFIG.DATA.stride
25
+ onnx_model = onnx.load(path)
26
+ options = onnxruntime.SessionOptions()
27
+ options.intra_op_num_threads = 8
28
+ options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
29
+ session = onnxruntime.InferenceSession(path, options)
30
+ input_names = [x.name for x in session.get_inputs()]
31
+ output_names = [x.name for x in session.get_outputs()]
32
+ print(input_names)
33
+ print(output_names)
34
+
35
+ audio_files = glob.glob(os.path.join(CONFIG.TEST.in_dir, '*.wav'))
36
+ hann = torch.sqrt(torch.hann_window(window))
37
+ os.makedirs(CONFIG.TEST.out_dir, exist_ok=True)
38
+ for file in tqdm.tqdm(audio_files, total=len(audio_files)):
39
+ sig, _ = librosa.load(file, sr=48000)
40
+ sig = torch.tensor(sig)
41
+ re_im = torch.stft(sig, window, stride, window=hann, return_complex=False).permute(1, 0, 2).unsqueeze(
42
+ 1).numpy().astype(np.float32)
43
+
44
+ inputs = {input_names[i]: np.zeros([d.dim_value for d in _input.type.tensor_type.shape.dim],
45
+ dtype=np.float32)
46
+ for i, _input in enumerate(onnx_model.graph.input)
47
+ }
48
+
49
+ output_audio = []
50
+ for t in range(re_im.shape[0]):
51
+ inputs[input_names[0]] = re_im[t]
52
+ out, prev_mag, predictor_state, mlp_state = session.run(output_names, inputs)
53
+ inputs[input_names[1]] = prev_mag
54
+ inputs[input_names[2]] = predictor_state
55
+ inputs[input_names[3]] = mlp_state
56
+ output_audio.append(out)
57
+
58
+ output_audio = torch.tensor(np.concatenate(output_audio, 0))
59
+ output_audio = output_audio.permute(1, 0, 2).contiguous()
60
+ output_audio = torch.view_as_complex(output_audio)
61
+ output_audio = torch.istft(output_audio, window, stride, window=hann)
62
+ sf.write(os.path.join(CONFIG.TEST.out_dir, os.path.basename(file)), output_audio, samplerate=48000,
63
+ subtype='PCM_16')
loss.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import librosa
2
+ import pytorch_lightning as pl
3
+ import torch
4
+ from auraloss.freq import STFTLoss, MultiResolutionSTFTLoss, apply_reduction, SpectralConvergenceLoss, STFTMagnitudeLoss
5
+
6
+ from config import CONFIG
7
+
8
+
9
+ class STFTLossDDP(STFTLoss):
10
+ def __init__(self,
11
+ fft_size=1024,
12
+ hop_size=256,
13
+ win_length=1024,
14
+ window="hann_window",
15
+ w_sc=1.0,
16
+ w_log_mag=1.0,
17
+ w_lin_mag=0.0,
18
+ w_phs=0.0,
19
+ sample_rate=None,
20
+ scale=None,
21
+ n_bins=None,
22
+ scale_invariance=False,
23
+ eps=1e-8,
24
+ output="loss",
25
+ reduction="mean",
26
+ device=None):
27
+ super(STFTLoss, self).__init__()
28
+ self.fft_size = fft_size
29
+ self.hop_size = hop_size
30
+ self.win_length = win_length
31
+ self.window = getattr(torch, window)(win_length)
32
+ self.w_sc = w_sc
33
+ self.w_log_mag = w_log_mag
34
+ self.w_lin_mag = w_lin_mag
35
+ self.w_phs = w_phs
36
+ self.sample_rate = sample_rate
37
+ self.scale = scale
38
+ self.n_bins = n_bins
39
+ self.scale_invariance = scale_invariance
40
+ self.eps = eps
41
+ self.output = output
42
+ self.reduction = reduction
43
+ self.device = device
44
+
45
+ self.spectralconv = SpectralConvergenceLoss()
46
+ self.logstft = STFTMagnitudeLoss(log=True, reduction=reduction)
47
+ self.linstft = STFTMagnitudeLoss(log=False, reduction=reduction)
48
+
49
+ # setup mel filterbank
50
+ if self.scale == "mel":
51
+ assert (sample_rate is not None) # Must set sample rate to use mel scale
52
+ assert (n_bins <= fft_size) # Must be more FFT bins than Mel bins
53
+ fb = librosa.filters.mel(sample_rate, fft_size, n_mels=n_bins)
54
+ self.fb = torch.tensor(fb).unsqueeze(0)
55
+ elif self.scale == "chroma":
56
+ assert (sample_rate is not None) # Must set sample rate to use chroma scale
57
+ assert (n_bins <= fft_size) # Must be more FFT bins than chroma bins
58
+ fb = librosa.filters.chroma(sample_rate, fft_size, n_chroma=n_bins)
59
+ self.fb = torch.tensor(fb).unsqueeze(0)
60
+
61
+ if scale is not None and device is not None:
62
+ self.fb = self.fb.to(self.device) # move filterbank to device
63
+
64
+ def compressed_loss(self, x, y, alpha=None):
65
+ self.window = self.window.to(x.device)
66
+ x_mag, x_phs = self.stft(x.view(-1, x.size(-1)))
67
+ y_mag, y_phs = self.stft(y.view(-1, y.size(-1)))
68
+
69
+ if alpha is not None:
70
+ x_mag = x_mag ** alpha
71
+ y_mag = y_mag ** alpha
72
+
73
+ # apply relevant transforms
74
+ if self.scale is not None:
75
+ x_mag = torch.matmul(self.fb.to(x_mag.device), x_mag)
76
+ y_mag = torch.matmul(self.fb.to(y_mag.device), y_mag)
77
+
78
+ # normalize scales
79
+ if self.scale_invariance:
80
+ alpha = (x_mag * y_mag).sum([-2, -1]) / ((y_mag ** 2).sum([-2, -1]))
81
+ y_mag = y_mag * alpha.unsqueeze(-1)
82
+
83
+ # compute loss terms
84
+ sc_loss = self.spectralconv(x_mag, y_mag) if self.w_sc else 0.0
85
+ mag_loss = self.logstft(x_mag, y_mag) if self.w_log_mag else 0.0
86
+ lin_loss = self.linstft(x_mag, y_mag) if self.w_lin_mag else 0.0
87
+
88
+ # combine loss terms
89
+ loss = (self.w_sc * sc_loss) + (self.w_log_mag * mag_loss) + (self.w_lin_mag * lin_loss)
90
+ loss = apply_reduction(loss, reduction=self.reduction)
91
+ return loss
92
+
93
+ def forward(self, x, y):
94
+ return self.compressed_loss(x, y, 0.3)
95
+
96
+
97
+ class MRSTFTLossDDP(MultiResolutionSTFTLoss):
98
+ def __init__(self,
99
+ fft_sizes=(1024, 2048, 512),
100
+ hop_sizes=(120, 240, 50),
101
+ win_lengths=(600, 1200, 240),
102
+ window="hann_window",
103
+ w_sc=1.0,
104
+ w_log_mag=1.0,
105
+ w_lin_mag=0.0,
106
+ w_phs=0.0,
107
+ sample_rate=None,
108
+ scale=None,
109
+ n_bins=None,
110
+ scale_invariance=False,
111
+ **kwargs):
112
+ super(MultiResolutionSTFTLoss, self).__init__()
113
+ assert len(fft_sizes) == len(hop_sizes) == len(win_lengths) # must define all
114
+ self.stft_losses = torch.nn.ModuleList()
115
+ for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
116
+ self.stft_losses += [STFTLossDDP(fs,
117
+ ss,
118
+ wl,
119
+ window,
120
+ w_sc,
121
+ w_log_mag,
122
+ w_lin_mag,
123
+ w_phs,
124
+ sample_rate,
125
+ scale,
126
+ n_bins,
127
+ scale_invariance,
128
+ **kwargs)]
129
+
130
+
131
+ class Loss(pl.LightningModule):
132
+ def __init__(self):
133
+ super(Loss, self).__init__()
134
+ self.stft_loss = MRSTFTLossDDP(sample_rate=CONFIG.DATA.sr, device="cpu", w_log_mag=0.0, w_lin_mag=1.0)
135
+ self.window = torch.sqrt(torch.hann_window(CONFIG.DATA.window_size))
136
+
137
+ def forward(self, x, y):
138
+ x = x.permute(0, 2, 3, 1)
139
+ y = y.permute(0, 2, 3, 1)
140
+ wave_x = torch.istft(torch.view_as_complex(x.contiguous()), CONFIG.DATA.window_size, CONFIG.DATA.stride,
141
+ window=self.window.to(x.device))
142
+ wave_y = torch.istft(torch.view_as_complex(y.contiguous()), CONFIG.DATA.window_size, CONFIG.DATA.stride,
143
+ window=self.window.to(y.device))
144
+ loss = self.stft_loss(wave_x, wave_y)
145
+ return loss
main.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+
4
+ import pytorch_lightning as pl
5
+ import soundfile as sf
6
+ import torch
7
+ from pytorch_lightning.callbacks import ModelCheckpoint
8
+ from pytorch_lightning.utilities.model_summary import summarize
9
+ from torch.utils.data import DataLoader
10
+
11
+ from config import CONFIG
12
+ from dataset import TrainDataset, TestLoader, BlindTestLoader
13
+ from models.frn import PLCModel, OnnxWrapper
14
+ from utils.tblogger import TensorBoardLoggerExpanded
15
+ from utils.utils import mkdir_p
16
+
17
+ parser = argparse.ArgumentParser()
18
+
19
+ parser.add_argument('--version', default=None,
20
+ help='version to resume')
21
+ parser.add_argument('--mode', default='train',
22
+ help='training or testing mode')
23
+
24
+ args = parser.parse_args()
25
+ os.environ["CUDA_VISIBLE_DEVICES"] = str(CONFIG.gpus)
26
+ assert args.mode in ['train', 'eval', 'test', 'onnx'], "--mode should be 'train', 'eval', 'test' or 'onnx'"
27
+
28
+
29
+ def resume(train_dataset, val_dataset, version):
30
+ print("Version", version)
31
+ model_path = os.path.join(CONFIG.LOG.log_dir, 'version_{}/checkpoints/'.format(str(version)))
32
+ config_path = os.path.join(CONFIG.LOG.log_dir, 'version_{}/'.format(str(version)) + 'hparams.yaml')
33
+ model_name = [x for x in os.listdir(model_path) if x.endswith(".ckpt")][0]
34
+ ckpt_path = model_path + model_name
35
+ checkpoint = PLCModel.load_from_checkpoint(ckpt_path,
36
+ strict=True,
37
+ hparams_file=config_path,
38
+ train_dataset=train_dataset,
39
+ val_dataset=val_dataset,
40
+ window_size=CONFIG.DATA.window_size)
41
+
42
+ return checkpoint
43
+
44
+
45
+ def train():
46
+ train_dataset = TrainDataset('train')
47
+ val_dataset = TrainDataset('val')
48
+ checkpoint_callback = ModelCheckpoint(monitor='val_loss', mode='min', verbose=True,
49
+ filename='frn-{epoch:02d}-{val_loss:.4f}', save_weights_only=False)
50
+ gpus = CONFIG.gpus.split(',')
51
+ logger = TensorBoardLoggerExpanded(CONFIG.DATA.sr)
52
+ if args.version is not None:
53
+ model = resume(train_dataset, val_dataset, args.version)
54
+ else:
55
+ model = PLCModel(train_dataset,
56
+ val_dataset,
57
+ window_size=CONFIG.DATA.window_size,
58
+ enc_layers=CONFIG.MODEL.enc_layers,
59
+ enc_in_dim=CONFIG.MODEL.enc_in_dim,
60
+ enc_dim=CONFIG.MODEL.enc_dim,
61
+ pred_dim=CONFIG.MODEL.pred_dim,
62
+ pred_layers=CONFIG.MODEL.pred_layers)
63
+
64
+ trainer = pl.Trainer(logger=logger,
65
+ gradient_clip_val=CONFIG.TRAIN.clipping_val,
66
+ gpus=len(gpus),
67
+ max_epochs=CONFIG.TRAIN.epochs,
68
+ accelerator="gpu" if len(gpus) > 1 else None,
69
+ callbacks=[checkpoint_callback]
70
+ )
71
+
72
+ print(model.hparams)
73
+ print(
74
+ 'Dataset: {}, Train files: {}, Val files {}'.format(CONFIG.DATA.dataset, len(train_dataset), len(val_dataset)))
75
+ trainer.fit(model)
76
+
77
+
78
+ def to_onnx(model, onnx_path):
79
+ model.eval()
80
+
81
+ model = OnnxWrapper(model)
82
+
83
+ torch.onnx.export(model,
84
+ model.sample,
85
+ onnx_path,
86
+ export_params=True,
87
+ opset_version=12,
88
+ input_names=model.input_names,
89
+ output_names=model.output_names,
90
+ do_constant_folding=True,
91
+ verbose=False)
92
+
93
+
94
+ if __name__ == '__main__':
95
+
96
+ if args.mode == 'train':
97
+ train()
98
+ else:
99
+ model = resume(None, None, args.version)
100
+ print(model.hparams)
101
+ print(summarize(model))
102
+
103
+ model.eval()
104
+ model.freeze()
105
+ if args.mode == 'eval':
106
+ model.cuda(device=0)
107
+ trainer = pl.Trainer(accelerator='gpu', devices=1, enable_checkpointing=False, logger=False)
108
+ testset = TestLoader()
109
+ test_loader = DataLoader(testset, batch_size=1, num_workers=4)
110
+ trainer.test(model, test_loader)
111
+ print('Version', args.version)
112
+ masking = CONFIG.DATA.EVAL.masking
113
+ prob = CONFIG.DATA.EVAL.transition_probs[0]
114
+ loss_percent = (1 - prob[0]) / (2 - prob[0] - prob[1]) * 100
115
+ print('Evaluate with real trace' if masking == 'real' else
116
+ 'Evaluate with generated trace with {:.2f}% packet loss'.format(loss_percent))
117
+ elif args.mode == 'test':
118
+ model.cuda(device=0)
119
+ testset = BlindTestLoader(test_dir=CONFIG.TEST.in_dir)
120
+ test_loader = DataLoader(testset, batch_size=1, num_workers=4)
121
+ trainer = pl.Trainer(accelerator='gpu', devices=1, enable_checkpointing=False, logger=False)
122
+ preds = trainer.predict(model, test_loader, return_predictions=True)
123
+ mkdir_p(CONFIG.TEST.out_dir)
124
+ for idx, path in enumerate(test_loader.dataset.data_list):
125
+ out_path = os.path.join(CONFIG.TEST.out_dir, os.path.basename(path))
126
+ sf.write(out_path, preds[idx], samplerate=CONFIG.DATA.sr, subtype='PCM_16')
127
+
128
+ else:
129
+ onnx_path = 'lightning_logs/version_{}/checkpoints/frn.onnx'.format(str(args.version))
130
+ to_onnx(model, onnx_path)
131
+ print('ONNX model saved to', onnx_path)
requirements (1).txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ auraloss==0.3.0
2
+ einops==0.6.0
3
+ librosa==0.9.2
4
+ matplotlib==3.5.3
5
+ numpy==1.22.3
6
+ onnxruntime==1.13.1
7
+ pandas==1.5.3
8
+ pydtmc==7.0.0
9
+ pytorch_lightning==1.9.0
10
+ scikit_learn==1.2.1
11
+ soundfile==0.11.0
12
+ torch==1.13.1
13
+ torchmetrics==0.11.0
14
+ tqdm==4.64.0
15
+ pystoi==0.3.3
16
+ pesq==0.0.4
17
+ onnx==1.13.0
18
+ altair<5
sample.wav ADDED
Binary file (797 kB). View file