import io
import os
import json
import base64
import random
import numpy as np
import pandas as pd
import gradio as gr
from pathlib import Path
from PIL import Image
from plots import get_pre_define_colors
from utils.load_model import load_xclip
from utils.predict import xclip_pred
DEVICE = "cpu"
XCLIP, OWLVIT_PRECESSOR = load_xclip(DEVICE)
XCLIP_DESC_PATH = "data/jsons/bs_cub_desc.json"
XCLIP_DESC = json.load(open(XCLIP_DESC_PATH, "r"))
PREPROCESS = lambda x: OWLVIT_PRECESSOR(images=x, return_tensors='pt')
IMAGES_FOLDER = "data/images"
# XCLIP_RESULTS = json.load(open("data/jsons/xclip_org.json", "r"))
# correct_predictions = [k for k, v in XCLIP_RESULTS.items() if v['prediction']]
# get the intersection of sachit and xclip (revised)
# INTERSECTION = []
# IMAGE_RES = 400 * 400 # minimum resolution
# TOTAL_SAMPLES = 20
# for file_name in XCLIP_RESULTS:
# image = Image.open(os.path.join(IMAGES_FOLDER, 'org', file_name)).convert('RGB')
# w, h = image.size
# if w * h < IMAGE_RES:
# continue
# else:
# INTERSECTION.append(file_name)
# IMAGE_FILE_LIST = random.sample(INTERSECTION, TOTAL_SAMPLES)
IMAGE_FILE_LIST = json.load(open("data/jsons/file_list.json", "r"))
# IMAGE_FILE_LIST = IMAGE_FILE_LIST[:19]
# IMAGE_FILE_LIST.append('Eastern_Bluebird.jpg')
IMAGE_GALLERY = [Image.open(os.path.join(IMAGES_FOLDER, 'org', file_name)).convert('RGB') for file_name in IMAGE_FILE_LIST]
ORG_PART_ORDER = ['back', 'beak', 'belly', 'breast', 'crown', 'forehead', 'eyes', 'legs', 'wings', 'nape', 'tail', 'throat']
ORDERED_PARTS = ['crown', 'forehead', 'nape', 'eyes', 'beak', 'throat', 'breast', 'belly', 'back', 'wings', 'legs', 'tail']
COLORS = get_pre_define_colors(12, cmap_set=['Set2', 'tab10'])
SACHIT_COLOR = "#ADD8E6"
# CUB_BOXES = json.load(open("data/jsons/cub_boxes_owlvit_large.json", "r"))
VISIBILITY_DICT = json.load(open("data/jsons/cub_vis_dict_binary.json", 'r'))
VISIBILITY_DICT['Eastern_Bluebird.jpg'] = dict(zip(ORDERED_PARTS, [True]*12))
# --- Image related functions ---
def img_to_base64(img):
img_pil = Image.fromarray(img) if isinstance(img, np.ndarray) else img
buffered = io.BytesIO()
img_pil.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode()
def create_blank_image(width=500, height=500, color=(255, 255, 255)):
"""Create a blank image of the given size and color."""
return np.array(Image.new("RGB", (width, height), color))
# Convert RGB colors to hex
def rgb_to_hex(rgb):
return f"#{''.join(f'{x:02x}' for x in rgb)}"
def load_part_images(file_name: str) -> dict:
part_images = {}
# start_time = time.time()
for part_name in ORDERED_PARTS:
base_name = Path(file_name).stem
part_image_path = os.path.join(IMAGES_FOLDER, "boxes", f"{base_name}_{part_name}.jpg")
if not Path(part_image_path).exists():
continue
image = np.array(Image.open(part_image_path))
part_images[part_name] = img_to_base64(image)
# print(f"Time cost to load 12 images: {time.time() - start_time}")
# This takes less than 0.01 seconds. So the loading time is not the bottleneck.
return part_images
def generate_xclip_explanations(result_dict:dict, visibility: dict, part_mask: dict = dict(zip(ORDERED_PARTS, [1]*12))):
"""
The result_dict needs three keys: 'descriptions', 'pred_scores', 'file_name'
descriptions: {part_name1: desc_1, part_name2: desc_2, ...}
pred_scores: {part_name1: score_1, part_name2: score_2, ...}
file_name: str
"""
descriptions = result_dict['descriptions']
image_name = result_dict['file_name']
part_images = PART_IMAGES_DICT[image_name]
MAX_LENGTH = 50
exp_length = 400
fontsize = 15
# Start the SVG inside a div
svg_parts = [f'
',
"", "
"))
# Join everything into a single string
html = "".join(svg_parts)
return html
def generate_sachit_explanations(result_dict:dict):
descriptions = result_dict['descriptions']
scores = result_dict['scores']
MAX_LENGTH = 50
exp_length = 400
fontsize = 15
descriptions = zip(scores, descriptions)
descriptions = sorted(descriptions, key=lambda x: x[0], reverse=True)
# Start the SVG inside a div
svg_parts = [f'
',
"", "
"))
# Join everything into a single string
html = "".join(svg_parts)
return html
# --- Constants created by the functions above ---
BLANK_OVERLAY = img_to_base64(create_blank_image())
PART_COLORS = {part: rgb_to_hex(COLORS[i]) for i, part in enumerate(ORDERED_PARTS)}
blank_image = np.array(Image.open('data/images/final.png').convert('RGB'))
PART_IMAGES_DICT = {file_name: load_part_images(file_name) for file_name in IMAGE_FILE_LIST}
# --- Gradio Functions ---
def update_selected_image(event: gr.SelectData):
image_height = 400
index = event.index
image_name = IMAGE_FILE_LIST[index]
current_image.state = image_name
org_image = Image.open(os.path.join(IMAGES_FOLDER, 'org', image_name)).convert('RGB')
img_base64 = f"""
"""
gt_label = XCLIP_RESULTS[image_name]['ground_truth']
gt_class.state = gt_label
# --- for initial value only ---
out_dict = xclip_pred(new_desc=None, new_part_mask=None, new_class=None, org_desc=XCLIP_DESC_PATH, image=Image.open(os.path.join(IMAGES_FOLDER, 'org', current_image.state)).convert('RGB'), model=XCLIP, owlvit_processor=OWLVIT_PRECESSOR, device=DEVICE, image_name=current_image.state)
xclip_label = out_dict['pred_class']
clip_pred_scores = out_dict['pred_score']
xclip_part_scores = out_dict['pred_desc_scores']
result_dict = {'descriptions': dict(zip(ORG_PART_ORDER, out_dict["descriptions"])), 'pred_scores': xclip_part_scores, 'file_name': current_image.state}
xclip_exp = generate_xclip_explanations(result_dict, VISIBILITY_DICT[current_image.state], part_mask=dict(zip(ORDERED_PARTS, [1]*12)))
# --- end of intial value ---
xclip_color = "green" if xclip_label.strip() == gt_label.strip() else "red"
xclip_pred_markdown = f"""
### XCLIP: {xclip_label} {clip_pred_scores:.4f}
"""
gt_label = f"""
## {gt_label}
"""
current_predicted_class.state = xclip_label
# Populate the textbox with current descriptions
custom_class_name = "class name: custom"
descs = XCLIP_DESC[xclip_label]
descs = {k: descs[i] for i, k in enumerate(ORG_PART_ORDER)}
descs = {k: descs[k] for k in ORDERED_PARTS}
custom_text = [custom_class_name] + list(descs.values())
descriptions = ";\n".join(custom_text)
textbox = gr.Textbox.update(value=descriptions, lines=12, visible=True, label="XCLIP descriptions", interactive=True, info='Please use ";" to separate the descriptions for each part, and keep the format of {part name}: {descriptions}', show_label=False)
# modified_exp = gr.HTML().update(value="", visible=True)
return gt_label, img_base64, xclip_pred_markdown, xclip_exp, current_image, textbox
def on_edit_button_click_xclip():
empty_exp = gr.HTML.update(visible=False)
# Populate the textbox with current descriptions
descs = XCLIP_DESC[current_predicted_class.state]
descs = {k: descs[i] for i, k in enumerate(ORG_PART_ORDER)}
descs = {k: descs[k] for k in ORDERED_PARTS}
custom_text = ["class name: custom"] + list(descs.values())
descriptions = ";\n".join(custom_text)
textbox = gr.Textbox.update(value=descriptions, lines=12, visible=True, label="XCLIP descriptions", interactive=True, info='Please use ";" to separate the descriptions for each part, and keep the format of {part name}: {descriptions}', show_label=False)
return textbox, empty_exp
def convert_input_text_to_xclip_format(textbox_input: str):
# Split the descriptions by newline to get individual descriptions for each part
descriptions_list = textbox_input.split(";\n")
# the first line should be "class name: xxx"
class_name_line = descriptions_list[0]
new_class_name = class_name_line.split(":")[1].strip()
descriptions_list = descriptions_list[1:]
# construct descripion dict with part name as key
descriptions_dict = {}
for desc in descriptions_list:
if desc.strip() == "":
continue
part_name, _ = desc.split(":")
descriptions_dict[part_name.strip()] = desc
# fill with empty string if the part is not in the descriptions
part_mask = {}
for part in ORDERED_PARTS:
if part not in descriptions_dict:
descriptions_dict[part] = ""
part_mask[part] = 0
else:
part_mask[part] = 1
return descriptions_dict, part_mask, new_class_name
def on_predict_button_click_xclip(textbox_input: str):
descriptions_dict, part_mask, new_class_name = convert_input_text_to_xclip_format(textbox_input)
# Get the new predictions and explanations
out_dict = xclip_pred(new_desc=descriptions_dict, new_part_mask=part_mask, new_class=new_class_name, org_desc=XCLIP_DESC_PATH, image=Image.open(os.path.join(IMAGES_FOLDER, 'org', current_image.state)).convert('RGB'), model=XCLIP, owlvit_processor=OWLVIT_PRECESSOR, device=DEVICE, image_name=current_image.state)
xclip_label = out_dict['pred_class']
xclip_pred_score = out_dict['pred_score']
xclip_part_scores = out_dict['pred_desc_scores']
custom_label = out_dict['modified_class']
custom_pred_score = out_dict['modified_score']
custom_part_scores = out_dict['modified_desc_scores']
# construct a result dict to generate xclip explanations
result_dict = {'descriptions': dict(zip(ORG_PART_ORDER, out_dict["descriptions"])), 'pred_scores': xclip_part_scores, 'file_name': current_image.state}
xclip_explanation = generate_xclip_explanations(result_dict, VISIBILITY_DICT[current_image.state], part_mask)
modified_result_dict = {'descriptions': dict(zip(ORG_PART_ORDER, out_dict["modified_descriptions"])), 'pred_scores': custom_part_scores, 'file_name': current_image.state}
modified_explanation = generate_xclip_explanations(modified_result_dict, VISIBILITY_DICT[current_image.state], part_mask)
xclip_color = "green" if xclip_label.strip() == gt_class.state.strip() else "red"
xclip_pred_markdown = f"""
### XCLIP: {xclip_label} {xclip_pred_score:.4f}
"""
custom_color = "green" if custom_label.strip() == gt_class.state.strip() else "red"
custom_pred_markdown = f"""
### XCLIP: {custom_label} {custom_pred_score:.4f}
"""
textbox = gr.Textbox.update(visible=False)
# return textbox, xclip_pred_markdown, xclip_explanation, custom_pred_markdown, modified_explanation
modified_exp = gr.HTML().update(value=modified_explanation, visible=True)
return textbox, xclip_pred_markdown, xclip_explanation, custom_pred_markdown, modified_exp
custom_css = """
html, body {
margin: 0;
padding: 0;
}
#container {
position: relative;
width: 400px;
height: 400px;
border: 1px solid #000;
margin: 0 auto; /* This will center the container horizontally */
}
#canvas {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
object-fit: cover;
}
"""
# Define the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, title="PEEB") as demo:
current_image = gr.State("")
current_predicted_class = gr.State("")
gt_class = gr.State("")
with gr.Column():
title_text = gr.Markdown("# PEEB - demo")
gr.Markdown(
"- In this demo, you can edit the descriptions of a class and see how to model react to it."
)
# display the gallery of images
with gr.Column():
gr.Markdown("## Select an image to start!")
image_gallery = gr.Gallery(value=IMAGE_GALLERY, label=None, preview=False, allow_preview=False, columns=10, height=250)
gr.Markdown("### Custom descritions: \n The first row should be **class name: {some name};**, where you can name your descriptions. \n For the remianing descriptions, please use **;** to separate the descriptions for each part, and use the format **{part name}: {descriptions}**. \n Note that you can delete a part completely, in such cases, all descriptions will remove the corresponding part.")
with gr.Row():
with gr.Column():
image_label = gr.Markdown("### Class Name")
org_image = gr.HTML()
with gr.Column():
with gr.Row():
# xclip_predict_button = gr.Button(label="Predict", value="Predict")
xclip_predict_button = gr.Button(value="Predict")
xclip_pred_label = gr.Markdown("### XCLIP:")
xclip_explanation = gr.HTML()
with gr.Column():
# xclip_edit_button = gr.Button(label="Edit", value="Reset Descriptions")
xclip_edit_button = gr.Button(value="Reset Descriptions")
custom_pred_label = gr.Markdown(
"### Custom Descritpions:"
)
xclip_textbox = gr.Textbox(lines=12, placeholder="Edit the descriptions here", visible=False)
# ai_explanation = gr.Image(type="numpy", visible=True, show_label=False, height=500)
custom_explanation = gr.HTML()
gr.HTML(" ")
image_gallery.select(update_selected_image, inputs=None, outputs=[image_label, org_image, xclip_pred_label, xclip_explanation, current_image, xclip_textbox])
xclip_edit_button.click(on_edit_button_click_xclip, inputs=[], outputs=[xclip_textbox, custom_explanation])
xclip_predict_button.click(on_predict_button_click_xclip, inputs=[xclip_textbox], outputs=[xclip_textbox, xclip_pred_label, xclip_explanation, custom_pred_label, custom_explanation])
demo.launch(server_port=5000, share=True)