Peijie commited on
Commit
c00622b
1 Parent(s): a5ea546

uninstall old version gradio

Browse files
Files changed (1) hide show
  1. app.py +2 -19
app.py CHANGED
@@ -2,6 +2,7 @@ import os
2
  import gradio as gr
3
  print(f"Gradio version {gr.__version__}")
4
  if gr.__version__ != '4.28.2':
 
5
  os.system("pip install gradio==4.28.2")
6
  print(f"Gradio version: {gr.__version__}")
7
 
@@ -10,9 +11,7 @@ import io
10
  import torch
11
  import json
12
  import base64
13
- import random
14
  import numpy as np
15
- import pandas as pd
16
  from pathlib import Path
17
  from PIL import Image
18
 
@@ -31,24 +30,8 @@ IMAGE2GT = json.load(open("data/jsons/image2gt.json", 'r'))
31
  CUB_DESC_EMBEDS = torch.load('data/text_embeddings/cub_200_desc.pt').to(DEVICE)
32
  CUB_IDX2NAME = json.load(open('data/jsons/cub_desc_idx2name.json', 'r'))
33
  CUB_IDX2NAME = {int(k): v for k, v in CUB_IDX2NAME.items()}
34
- # correct_predictions = [k for k, v in XCLIP_RESULTS.items() if v['prediction']]
35
-
36
- # get the intersection of sachit and xclip (revised)
37
- # INTERSECTION = []
38
- # IMAGE_RES = 400 * 400 # minimum resolution
39
- # TOTAL_SAMPLES = 20
40
- # for file_name in XCLIP_RESULTS:
41
- # image = Image.open(os.path.join(IMAGES_FOLDER, 'org', file_name)).convert('RGB')
42
- # w, h = image.size
43
- # if w * h < IMAGE_RES:
44
- # continue
45
- # else:
46
- # INTERSECTION.append(file_name)
47
-
48
- # IMAGE_FILE_LIST = random.sample(INTERSECTION, TOTAL_SAMPLES)
49
  IMAGE_FILE_LIST = json.load(open("data/jsons/file_list.json", "r"))
50
- # IMAGE_FILE_LIST = IMAGE_FILE_LIST[:19]
51
- # IMAGE_FILE_LIST.append('Eastern_Bluebird.jpg')
52
  IMAGE_GALLERY = [Image.open(os.path.join(IMAGES_FOLDER, 'org', file_name)).convert('RGB') for file_name in IMAGE_FILE_LIST]
53
 
54
  ORG_PART_ORDER = ['back', 'beak', 'belly', 'breast', 'crown', 'forehead', 'eyes', 'legs', 'wings', 'nape', 'tail', 'throat']
 
2
  import gradio as gr
3
  print(f"Gradio version {gr.__version__}")
4
  if gr.__version__ != '4.28.2':
5
+ os.system("pip uninstall gradio")
6
  os.system("pip install gradio==4.28.2")
7
  print(f"Gradio version: {gr.__version__}")
8
 
 
11
  import torch
12
  import json
13
  import base64
 
14
  import numpy as np
 
15
  from pathlib import Path
16
  from PIL import Image
17
 
 
30
  CUB_DESC_EMBEDS = torch.load('data/text_embeddings/cub_200_desc.pt').to(DEVICE)
31
  CUB_IDX2NAME = json.load(open('data/jsons/cub_desc_idx2name.json', 'r'))
32
  CUB_IDX2NAME = {int(k): v for k, v in CUB_IDX2NAME.items()}
33
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  IMAGE_FILE_LIST = json.load(open("data/jsons/file_list.json", "r"))
 
 
35
  IMAGE_GALLERY = [Image.open(os.path.join(IMAGES_FOLDER, 'org', file_name)).convert('RGB') for file_name in IMAGE_FILE_LIST]
36
 
37
  ORG_PART_ORDER = ['back', 'beak', 'belly', 'breast', 'crown', 'forehead', 'eyes', 'legs', 'wings', 'nape', 'tail', 'throat']