import streamlit as st from annotated_text import annotated_text from refined.inference.processor import Refined from PIL import Image # Load WordLift Logo image = Image.open('WordLift_logo.png') # Initiate the model model_options = {"aida_model", "wikipedia_model_with_numbers"} selected_model = st.sidebar.selectbox("Select the Model", list(model_options)) # Load the pretrained model refined_model = Refined.from_pretrained(model_name=selected_model, entity_set="wikipedia") # Create the form with st.form(key='my_form'): st.sidebar.image(image, caption='', use_column_width=True) text_input = st.text_input(label='Enter a sentence') submit_button = st.form_submit_button(label='Submit') # Process the text and extract the entities if text_input: entities = refined_model.process_text(text_input) entities_map = {} entities_link_descriptions = {} for entity in entities: single_entity_list = str(entity).strip('][').replace("\'", "").split(', ') if len(single_entity_list) >= 2 and "wikidata" in single_entity_list[1]: entities_map[get_wikidata_id(single_entity_list[1]).strip()] = single_entity_list[0].strip() entities_link_descriptions[get_wikidata_id(single_entity_list[1]).strip()] = single_entity_list[2].strip().replace("(", "").replace(")", "") combined_entity_info_dictionary = dict([(k, [entities_map[k], entities_link_descriptions[k]]) for k in entities_map]) def get_entity_description(entity_link, combined_entity_info_dictionary): return combined_entity_info_dictionary[entity_link][1] annotations = [] for wikidata_link, entity in entities_map.items(): description = get_entity_description(wikidata_link, combined_entity_info_dictionary) annotations.append((entity, wikidata_link, description)) st.write(entity + " , " + wikidata_link + " , " + description) # Annotate text with entities if submit_button: annotated_text(*annotations)