import streamlit as st import torch import sacremoses from transformers import pipeline from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import FSMTForConditionalGeneration, FSMTTokenizer st.title("Paraphraser Three -- Back Translation") user_input = st.text_area("Input sentence.") def load_en2de(): en2de = pipeline("translation_en_to_de", model="t5-base") return en2de def load_de2en(): model_name = "facebook/wmt19-de-en" tokenizer = FSMTTokenizer.from_pretrained(model_name) model_de_to_en = FSMTForConditionalGeneration.from_pretrained(model_name) return tokenizer, model_de_to_en en2de = load_en2de() tokenizer_de2en, de2en = load_de2en() en_to_de_output = en2de(user_input) translated_text = en_to_de_output[0]['translation_text'] input_ids = tokenizer_de2en.encode(translated_text, return_tensors="pt") output_ids = de2en.generate(input_ids)[0] augmented_text = tokenizer_de2en.decode(output_ids, skip_special_tokens=True) st.write("Paraphrased text using back translation: ", augmented_text)