Wootang01 commited on
Commit
87d54d3
·
1 Parent(s): ee02c30

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -17
app.py CHANGED
@@ -1,27 +1,26 @@
1
  import gradio as gr
2
- import torch
3
-
4
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
5
  model = AutoModelForSeq2SeqLM.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality")
6
  tokenizer = AutoTokenizer.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality")
7
-
8
- device = torch.device("cude" if torch.cuda.is_available() else "cpu")
9
- model = model.to(device)
10
-
11
  def generate_text(inp):
12
- text = "paraphrase: "+context + " </s>"
13
  context = inp
14
- encoding = tokenizer.encode_plus(text, max_length=128, padding=True, return_tensors="pt")
15
- input_ids, attention_mask = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
 
16
  model.eval()
17
- diverse_beams_output = model.generate(
18
- input_ids=input_ids, attention_mask= attention_mask, max_length=128, early_stopping=True, num_beams=5, num_beam_groups=5, num_return_sequences=5, diversity_penalty=0.70)
19
-
20
- sent = tokenizer.decode(diverse_beams_outputs[0], skip_special_tokens = True, clean_up_tokenization_spaces = True)
 
 
 
 
 
21
  return sent
22
 
23
- title = "Paraphraser One"
24
- description = "Paraphrase means to express meaning using different words. Write or paste your text below, submit, and the machine will attempt to express your meaning using different words."
25
-
26
  output_text = gr.outputs.Textbox()
27
- gr.Interface(generate_text, "textbox", output_text, title=title, description=description).launch(inline=False)
 
1
  import gradio as gr
 
 
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
  model = AutoModelForSeq2SeqLM.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality")
4
  tokenizer = AutoTokenizer.from_pretrained("ramsrigouthamg/t5-large-paraphraser-diverse-high-quality")
5
+ import torch
6
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
+ model = model.to(device)# Diverse Beam search
 
8
  def generate_text(inp):
 
9
  context = inp
10
+ text = "paraphrase: "+context + " </s>"
11
+ encoding = tokenizer.encode_plus(text,max_length =128, padding=True, return_tensors="pt")
12
+ input_ids,attention_mask = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
13
  model.eval()
14
+ diverse_beam_outputs = model.generate(
15
+ input_ids=input_ids,attention_mask=attention_mask,
16
+ max_length=128,
17
+ early_stopping=True,
18
+ num_beams=5,
19
+ num_beam_groups = 5,
20
+ num_return_sequences=5,
21
+ diversity_penalty = 0.70)
22
+ sent = tokenizer.decode(diverse_beam_outputs[0], skip_special_tokens=True,clean_up_tokenization_spaces=True)
23
  return sent
24
 
 
 
 
25
  output_text = gr.outputs.Textbox()
26
+ gr.Interface(generate_text,"textbox", output_text).launch(inline=False)