import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import gradio as gr from threading import Thread checkpoint = "WillHeld/soft-raccoon" device = "cuda" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) @spaces.GPU(duration=120) def predict(message, history, temperature, top_p): history.append({"role": "user", "content": message}) input_text = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True) inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) # Create a streamer streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Set up generation parameters generation_kwargs = { "input_ids": inputs, "max_new_tokens": 1024, "temperature": float(temperature), "top_p": float(top_p), "do_sample": True, "streamer": streamer, "eos_token_id": 128009 } # Run generation in a separate thread thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # Yield from the streamer as tokens are generated partial_text = "" for new_text in streamer: partial_text += new_text yield partial_text with gr.Blocks() as demo: chatbot = gr.ChatInterface( predict, additional_inputs=[ gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P") ], type="messages" ) demo.launch()