|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torchvision.transforms.functional import normalize |
|
from huggingface_hub import hf_hub_download |
|
import gradio as gr |
|
from gradio_imageslider import ImageSlider |
|
from briarmbg import BriaRMBG |
|
import PIL |
|
from PIL import Image |
|
from typing import Tuple |
|
|
|
net=BriaRMBG() |
|
|
|
model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth') |
|
if torch.cuda.is_available(): |
|
net.load_state_dict(torch.load(model_path)) |
|
net=net.cuda() |
|
else: |
|
net.load_state_dict(torch.load(model_path,map_location="cpu")) |
|
net.eval() |
|
|
|
|
|
def resize_image(image): |
|
image = image.convert('RGB') |
|
model_input_size = (1024, 1024) |
|
image = image.resize(model_input_size, Image.BILINEAR) |
|
return image |
|
|
|
|
|
def process(image): |
|
|
|
|
|
orig_image = Image.fromarray(image) |
|
w,h = orig_im_size = orig_image.size |
|
image = resize_image(orig_image) |
|
im_np = np.array(image) |
|
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1) |
|
im_tensor = torch.unsqueeze(im_tensor,0) |
|
im_tensor = torch.divide(im_tensor,255.0) |
|
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0]) |
|
if torch.cuda.is_available(): |
|
im_tensor=im_tensor.cuda() |
|
|
|
|
|
result=net(im_tensor) |
|
|
|
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0) |
|
ma = torch.max(result) |
|
mi = torch.min(result) |
|
result = (result-mi)/(ma-mi) |
|
|
|
im_array = (result*255).cpu().data.numpy().astype(np.uint8) |
|
pil_im = Image.fromarray(np.squeeze(im_array)) |
|
|
|
new_im = Image.new("RGBA", pil_im.size, (0,0,0,0)) |
|
new_im.paste(orig_image, mask=pil_im) |
|
|
|
|
|
return new_im |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.Markdown("## HBS_V1") |
|
gr.HTML(''' |
|
<p style="margin-bottom: 10px; font-size: 94%"> |
|
This is a demo for Human Body Segmentation that using |
|
YoloV8 image instance model as backbone. |
|
</p> |
|
''') |
|
title = "Human Body Segmentation" |
|
description = r"""Human Body Segmentation model developed by <a href='https://github.com/WildanJR09' target='_blank'><b>WildanJR</b></a>, Designed to effectively separate foreground from background in a range of categories and image types.<br> |
|
This model has been trained on a carefully selected dataset, which includes: general stock images, e-commerce, gaming, and advertising content, making it suitable for commercial use cases powering enterprise content creation at scale. The accuracy, efficiency, and versatility currently rival leading source-available models. It is ideal where content safety, legally licensed datasets, and bias mitigation are paramount. For test upload your image and wait. </a>.<br> |
|
""" |
|
examples = [['./jisoo.jpg'],] |
|
|
|
|
|
demo = gr.Interface(fn=process,inputs="image", outputs="image", examples=examples, title=title, description=description) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=False) |