import gradio as gr from ultralytics import YOLO import cv2 import numpy as np from PIL import Image, ImageDraw, ImageFont import sqlite3 import base64 from io import BytesIO import tempfile import pandas as pd import os from pathlib import Path # Load YOLOv8 model model = YOLO("best.pt") def predict_image(input_image, name, age, medical_record, sex): if input_image is None: return None, "Please Input The Image" # Convert Gradio input image (PIL Image) to numpy array image_np = np.array(input_image) # Ensure the image is in the correct format if len(image_np.shape) == 2: # grayscale to RGB image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB) elif image_np.shape[2] == 4: # RGBA to RGB image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB) # Perform prediction results = model(image_np) # Draw bounding boxes on the image image_with_boxes = image_np.copy() raw_predictions = [] if results[0].boxes: # Sort the results by confidence and take the highest confidence one highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item()) # Determine the label based on the class index class_index = highest_confidence_result.cls.item() if class_index == 0: label = "Immature" color = (0, 255, 255) # Yellow for Immature elif class_index == 1: label = "Mature" color = (255, 0, 0) # Red for Mature else: label = "Normal" color = (0, 255, 0) # Green for Normal confidence = highest_confidence_result.conf.item() xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0]) # Draw the bounding box cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2) # Enlarge font scale and thickness font_scale = 1.0 thickness = 2 # Calculate label background size (text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness) cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED) # Put the label text with black background cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness) raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]") raw_predictions_str = "\n".join(raw_predictions) # Convert to PIL image for further processing pil_image_with_boxes = Image.fromarray(image_with_boxes) # Add text and watermark pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label) return pil_image_with_boxes, raw_predictions_str # Function to add watermark def add_watermark(image): try: logo = Image.open('image-logo.png').convert("RGBA") image = image.convert("RGBA") # Resize logo basewidth = 100 wpercent = (basewidth / float(logo.size[0])) hsize = int((float(wpercent) * logo.size[1])) logo = logo.resize((basewidth, hsize), Image.LANCZOS) # Position logo position = (image.width - logo.width - 10, image.height - logo.height - 10) # Composite image transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0)) transparent.paste(image, (0, 0)) transparent.paste(logo, position, mask=logo) return transparent.convert("RGB") except Exception as e: print(f"Error adding watermark: {e}") return image # Function to add text and watermark def add_text_and_watermark(image, name, age, medical_record, sex, label): draw = ImageDraw.Draw(image) # Load a larger font (adjust the size as needed) font_size = 48 # Example font size try: font = ImageFont.truetype("font.ttf", size=font_size) except IOError: font = ImageFont.load_default() print("Error: cannot open resource, using default font.") text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}" # Calculate text bounding box text_bbox = draw.textbbox((0, 0), text, font=font) text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1] text_x = 20 text_y = 40 padding = 10 # Draw a filled rectangle for the background draw.rectangle( [text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding], fill="black" ) # Draw text on top of the rectangle draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font) # Add watermark to the image image_with_watermark = add_watermark(image) return image_with_watermark # Function to initialize the database def init_db(): conn = sqlite3.connect('results.db') c = conn.cursor() c.execute('''CREATE TABLE IF NOT EXISTS results (id INTEGER PRIMARY KEY, name TEXT, age INTEGER, medical_record INTEGER, sex TEXT, input_image BLOB, predicted_image BLOB, result TEXT)''') conn.commit() conn.close() # Function to submit result to the database def submit_result(name, age, medical_record, sex, input_image, predicted_image, result): conn = sqlite3.connect('results.db') c = conn.cursor() input_image_np = np.array(input_image) _, input_buffer = cv2.imencode('.png', cv2.cvtColor(input_image_np, cv2.COLOR_RGB2BGR)) input_image_bytes = input_buffer.tobytes() predicted_image_np = np.array(predicted_image) predicted_image_rgb = cv2.cvtColor(predicted_image_np, cv2.COLOR_RGB2BGR) # Ensure correct color conversion _, predicted_buffer = cv2.imencode('.png', predicted_image_rgb) predicted_image_bytes = predicted_buffer.tobytes() c.execute("INSERT INTO results (name, age, medical_record, sex, input_image, predicted_image, result) VALUES (?, ?, ?, ?, ?, ?, ?)", (name, age, medical_record, sex, input_image_bytes, predicted_image_bytes, result)) conn.commit() conn.close() return "Result submitted to database." # Function to load and view database in HTML format def view_database(): conn = sqlite3.connect('results.db') c = conn.cursor() c.execute("SELECT name, age, medical_record, sex, input_image, predicted_image, result FROM results") rows = c.fetchall() conn.close() # Prepare the HTML content html_content = "" for row in rows: name, age, medical_record, sex, input_image_bytes, predicted_image_bytes, result = row # Decode the images input_image = Image.open(BytesIO(input_image_bytes)) predicted_image = Image.open(BytesIO(predicted_image_bytes)) # Convert images to base64 for display in HTML buffered_input = BytesIO() input_image.save(buffered_input, format="PNG") input_image_base64 = base64.b64encode(buffered_input.getvalue()).decode('utf-8') buffered_predicted = BytesIO() predicted_image.save(buffered_predicted, format="PNG") predicted_image_base64 = base64.b64encode(buffered_predicted.getvalue()).decode('utf-8') # Add a row to the HTML table html_content += f"" html_content += "
NameAgeMedical RecordSexInput ImagePredicted ImageResult
{name}{age}{medical_record}{sex}{result}
" return html_content # Function to download database or HTML file def download_file(file_format): directory = tempfile.gettempdir() db_file_path = os.path.join(directory, 'results.db') if file_format == "Database (.db)": # Simulate creating or writing to the database file here if not os.path.exists(db_file_path): # Create a dummy database file for demonstration conn = sqlite3.connect(db_file_path) conn.execute('CREATE TABLE IF NOT EXISTS results (id INTEGER PRIMARY KEY, name TEXT)') conn.commit() conn.close() return db_file_path elif file_format == "HTML (.html)": # Connect to the SQLite database conn = sqlite3.connect(db_file_path) try: # Attempt to read the results table into a DataFrame df = pd.read_sql_query("SELECT * FROM results", conn) except pd.errors.DatabaseError as e: conn.close() raise ValueError("Table 'results' does not exist in the database.") from e # Close the database connection conn.close() # Define the path for the HTML file html_file_path = os.path.join(directory, "results.html") # Save the DataFrame as an HTML file df.to_html(html_file_path, index=False) return html_file_path else: raise ValueError("Invalid file format specified.") # Initialize the database init_db() # Gradio Interface def interface(name, age, medical_record, sex, input_image): if input_image is None: return None, "Please upload an image.", None output_image, raw_result = predict_image(input_image, name, age, medical_record, sex) submit_status = submit_result(name, age, medical_record, sex, input_image, output_image, raw_result) return output_image, raw_result, submit_status # View Database Function (Updated) def view_db_interface(): html_content = view_database() return html_content # Download Function def download_interface(choice): try: # Get the file path file_path = download_file(choice) # Return the file path (string) directly for the Gradio component to handle return file_path except (FileNotFoundError, ValueError) as e: # Display error message in Gradio output return str(e) # Gradio Blocks with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# Cataract Detection System") gr.Markdown("Upload an image to detect cataract and add patient details.") gr.Markdown("This application uses YOLOv8 with mAP=0.981") with gr.Column(): name = gr.Textbox(label="Name") age = gr.Number(label="Age") medical_record = gr.Number(label="Medical Record") sex = gr.Radio(["Male", "Female"], label="Sex") input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB") with gr.Column(): submit_btn = gr.Button("Submit") output_image = gr.Image(type="pil", label="Predicted Image") with gr.Row(): raw_result = gr.Textbox(label="Raw Result", lines=5) submit_status = gr.Textbox(label="Submission Status") submit_btn.click(fn=interface, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result, submit_status]) with gr.Column(): view_db_btn = gr.Button("View Database") db_output = gr.HTML(label="Database Records") view_db_btn.click(fn=view_db_interface, inputs=[], outputs=[db_output]) with gr.Column(): download_choice = gr.Radio(["Database (.db)", "Database (.html)"], label="Choose the file to download:") download_btn_db = gr.Button("Download Database (.db)") download_btn_html = gr.Button("Download HTML (.html)") download_file_output = gr.File(label="Download File") download_btn_db.click(lambda: download_file("Database (.db)"), outputs=download_file_output) download_btn_html.click(lambda: download_file("HTML (.html)"), outputs=download_file_output) # Launch the Gradio app demo.launch()