import gradio as gr from ultralytics import YOLO import cv2 import numpy as np from PIL import Image, ImageDraw, ImageFont import base64 from io import BytesIO import tempfile import os from pathlib import Path import shutil # Load YOLOv8 model model = YOLO("best.pt") # Create directories if not present uploaded_folder = Path('Uploaded_Picture') predicted_folder = Path('Predicted_Picture') uploaded_folder.mkdir(parents=True, exist_ok=True) predicted_folder.mkdir(parents=True, exist_ok=True) # Path for HTML database file html_db_file = Path('patient_predictions.html') # Initialize HTML database file if not present if not html_db_file.exists(): with open(html_db_file, 'w') as f: f.write("

Patient Prediction Database

") def predict_image(input_image, name, age, medical_record, sex): if input_image is None: return None, "Please Input The Image" # Convert Gradio input image (PIL Image) to numpy array image_np = np.array(input_image) # Ensure the image is in the correct format if len(image_np.shape) == 2: # grayscale to RGB image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB) elif image_np.shape[2] == 4: # RGBA to RGB image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB) # Perform prediction results = model(image_np) # Draw bounding boxes on the image image_with_boxes = image_np.copy() raw_predictions = [] if results[0].boxes: # Sort the results by confidence and take the highest confidence one highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item()) # Determine the label based on the class index class_index = highest_confidence_result.cls.item() if class_index == 0: label = "Immature" color = (0, 255, 255) # Yellow for Immature elif class_index == 1: label = "Mature" color = (255, 0, 0) # Red for Mature else: label = "Normal" color = (0, 255, 0) # Green for Normal confidence = highest_confidence_result.conf.item() xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0]) # Draw the bounding box cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2) # Enlarge font scale and thickness font_scale = 1.0 thickness = 2 # Calculate label background size (text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness) cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED) # Put the label text with black background cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness) raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]") raw_predictions_str = "\n".join(raw_predictions) # Convert to PIL image for further processing pil_image_with_boxes = Image.fromarray(image_with_boxes) # Add text and watermark pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label) # Save images to directories image_name = f"{name}-{age}-{sex}-{medical_record}.png" input_image.save(uploaded_folder / image_name) pil_image_with_boxes.save(predicted_folder / image_name) # Convert the predicted image to base64 for embedding in HTML buffered = BytesIO() pil_image_with_boxes.save(buffered, format="PNG") predicted_image_base64 = base64.b64encode(buffered.getvalue()).decode() # Append the prediction to the HTML database append_patient_info_to_html(name, age, medical_record, sex, label, predicted_image_base64) return pil_image_with_boxes, raw_predictions_str # Function to add watermark def add_watermark(image): try: logo = Image.open('image-logo.png').convert("RGBA") image = image.convert("RGBA") # Resize logo basewidth = 100 wpercent = (basewidth / float(logo.size[0])) hsize = int((float(wpercent) * logo.size[1])) logo = logo.resize((basewidth, hsize), Image.LANCZOS) # Position logo position = (image.width - logo.width - 10, image.height - logo.height - 10) # Composite image transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0)) transparent.paste(image, (0, 0)) transparent.paste(logo, position, mask=logo) return transparent.convert("RGB") except Exception as e: print(f"Error adding watermark: {e}") return image # Function to add text and watermark def add_text_and_watermark(image, name, age, medical_record, sex, label): draw = ImageDraw.Draw(image) # Load a larger font (adjust the size as needed) font_size = 24 # Example font size try: font = ImageFont.truetype("font.ttf", size=font_size) except IOError: font = ImageFont.load_default() print("Error: cannot open resource, using default font.") text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}" # Calculate text bounding box text_bbox = draw.textbbox((0, 0), text, font=font) text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1] text_x = 20 text_y = 40 padding = 10 # Draw a filled rectangle for the background draw.rectangle( [text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding], fill="black" ) # Draw text on top of the rectangle draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font) # Add watermark to the image image_with_watermark = add_watermark(image) return image_with_watermark def append_patient_info_to_html(name, age, medical_record, sex, result, predicted_image_base64): # Check if the HTML file is empty or if the table structure is missing if os.stat(html_db_file).st_size == 0: # Empty file, create the table structure with open(html_db_file, 'a') as f: f.write(""" Patient Prediction Database

Patient Prediction Database

""") # Check if this patient already exists to prevent duplicate entries # This can be improved by checking unique identifiers like `medical_record` # Assuming the uniqueness of the medical record html_entry = f""" """ with open(html_db_file, 'a') as f: f.write(html_entry) # Ensure we only add the closing tags once if "
Name Age Medical Record Sex Result Predicted Image
{name} {age} {medical_record} {sex} {result} Predicted Image
" not in open(html_db_file).read(): with open(html_db_file, 'a') as f: f.write(""" """) return str(html_db_file) # Return the HTML file path for download # Function to download the folders def download_folder(folder): zip_path = os.path.join(tempfile.gettempdir(), f"{folder}.zip") # Zip the folder shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder) return zip_path # Gradio Interface def interface(name, age, medical_record, sex, input_image): if input_image is None: return None, "Please upload an image.", None output_image, raw_result = predict_image(input_image, name, age, medical_record, sex) # Return the current state of the HTML file with all predictions return output_image, raw_result, str(html_db_file) # Download Functions def download_predicted_folder(): return download_folder(predicted_folder) def download_uploaded_folder(): return download_folder(uploaded_folder) # Launch Gradio Interface with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# Cataract Detection System") gr.Markdown("Upload an image to detect cataract and add patient details.") gr.Markdown("This application uses YOLOv8 with mAP=0.981") with gr.Column(): name = gr.Textbox(label="Name") age = gr.Number(label="Age") medical_record = gr.Number(label="Medical Record") sex = gr.Radio(["Male", "Female"], label="Sex") input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB") with gr.Column(): submit_btn = gr.Button("Submit") output_image = gr.Image(type="pil", label="Predicted Image") with gr.Row(): raw_result = gr.Textbox(label="Prediction Result") with gr.Row(): download_html_btn = gr.Button("Download Patient Information (HTML)") download_uploaded_btn = gr.Button("Download Uploaded Images") download_predicted_btn = gr.Button("Download Predicted Images") # Add file download output components for the uploaded and predicted images patient_info_file = gr.File(label="Patient Information HTML File") uploaded_folder_file = gr.File(label="Uploaded Images Zip File") predicted_folder_file = gr.File(label="Predicted Images Zip File") # Connect functions with components submit_btn.click(fn=interface, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result]) download_html_btn.click(fn=append_patient_info_to_html, inputs=[name, age, medical_record, sex, raw_result], outputs=patient_info_file) download_uploaded_btn.click(fn=download_uploaded_folder, outputs=uploaded_folder_file) download_predicted_btn.click(fn=download_predicted_folder, outputs=predicted_folder_file) # Launch Gradio app demo.launch()