Upload 4 files
Browse files- app.py +111 -0
- app_1M_image.py +112 -0
- app_image.py +50 -0
- app_json.py +44 -0
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from app_1M_image import get_demo as get_demo_1M_image
|
6 |
+
from app_image import get_demo as get_demo_image
|
7 |
+
from app_json import get_demo as get_demo_json
|
8 |
+
from huggingface_hub import logging
|
9 |
+
|
10 |
+
|
11 |
+
logging.set_verbosity_debug()
|
12 |
+
|
13 |
+
|
14 |
+
def _get_demo_code(path: str) -> str:
|
15 |
+
code = Path(path).read_text()
|
16 |
+
code = code.replace("def get_demo():", "with gr.Blocks() as demo:")
|
17 |
+
code += "\n\ndemo.launch()"
|
18 |
+
return code
|
19 |
+
|
20 |
+
|
21 |
+
DEMO_EXPLANATION = """
|
22 |
+
<h1 style='text-align: center; margin-bottom: 1rem'> How to persist data from a Space to a Dataset? </h1>
|
23 |
+
|
24 |
+
This demo shows how to leverage both `gradio` and `huggingface_hub` to save data from a Space to a Dataset on the Hub.
|
25 |
+
When doing so, a few things must be taken care of: file formats, concurrent writes, name collision, number of commits,
|
26 |
+
number of files,... The tabs below shows different ways of implementing a "save to dataset" feature. Depending on the
|
27 |
+
complexity and usage of your app, you might want to use one or the other.
|
28 |
+
|
29 |
+
This Space demo comes as a pair with this guide. If you need more technical details, please refer to it.
|
30 |
+
"""
|
31 |
+
|
32 |
+
JSON_DEMO_EXPLANATION = """
|
33 |
+
## Use case
|
34 |
+
|
35 |
+
- Save inputs and outputs
|
36 |
+
- Build an annotation platform
|
37 |
+
|
38 |
+
## Data
|
39 |
+
|
40 |
+
Json-able only: text and numeric but no binaries.
|
41 |
+
|
42 |
+
## Robustness
|
43 |
+
|
44 |
+
Works with concurrent users and replicas.
|
45 |
+
|
46 |
+
## Limitations
|
47 |
+
|
48 |
+
if you expect millions of lines, you will need to split the local JSON file into multiple files to avoid getting your file tracked as LFS (5MB) on the Hub.
|
49 |
+
|
50 |
+
## Demo
|
51 |
+
"""
|
52 |
+
|
53 |
+
IMAGE_DEMO_EXPLANATION = """
|
54 |
+
## Use case
|
55 |
+
|
56 |
+
Save images with metadata (caption, parameters, datetime,...).
|
57 |
+
|
58 |
+
## Robustness
|
59 |
+
|
60 |
+
Works with concurrent users and replicas.
|
61 |
+
|
62 |
+
## Limitations
|
63 |
+
|
64 |
+
- only 10k images/folder supported on the Hub. If you expect more usage, you must save data in subfolders.
|
65 |
+
- only 1M images/repo supported on the Hub. If you expect more usage, you can zip your data before upload. See the _1M images Dataset_ demo.
|
66 |
+
|
67 |
+
## Demo
|
68 |
+
"""
|
69 |
+
|
70 |
+
IMAGE_1M_DEMO_EXPLANATION = """
|
71 |
+
## Use case:
|
72 |
+
|
73 |
+
Same as _Image Dataset_ example, but with very high usage expected.
|
74 |
+
|
75 |
+
## Robustness
|
76 |
+
|
77 |
+
Works with concurrent users and replicas.
|
78 |
+
|
79 |
+
## Limitations
|
80 |
+
|
81 |
+
None.
|
82 |
+
|
83 |
+
## Demo
|
84 |
+
"""
|
85 |
+
|
86 |
+
with gr.Blocks() as demo:
|
87 |
+
gr.Markdown(DEMO_EXPLANATION)
|
88 |
+
|
89 |
+
with gr.Tab("JSON Dataset"):
|
90 |
+
gr.Markdown(JSON_DEMO_EXPLANATION)
|
91 |
+
get_demo_json()
|
92 |
+
gr.Markdown("## Result\n\nhttps://huggingface.co/datasets/Wauplin/example-commit-scheduler-json\n\n## Code")
|
93 |
+
with gr.Accordion("Source code", open=True):
|
94 |
+
gr.Code(_get_demo_code("app_json.py"), language="python")
|
95 |
+
|
96 |
+
with gr.Tab("Image Dataset"):
|
97 |
+
gr.Markdown(IMAGE_DEMO_EXPLANATION)
|
98 |
+
get_demo_image()
|
99 |
+
gr.Markdown("## Result\n\nhttps://huggingface.co/datasets/Wauplin/example-commit-scheduler-image\n\n## Code")
|
100 |
+
with gr.Accordion("Source code", open=True):
|
101 |
+
gr.Code(_get_demo_code("app_image.py"), language="python")
|
102 |
+
|
103 |
+
with gr.Tab("1M images Dataset"):
|
104 |
+
gr.Markdown(IMAGE_1M_DEMO_EXPLANATION)
|
105 |
+
get_demo_1M_image()
|
106 |
+
gr.Markdown(
|
107 |
+
"## Result\n\nhttps://huggingface.co/datasets/Wauplin/example-commit-scheduler-image-zip\n\n## Code"
|
108 |
+
)
|
109 |
+
with gr.Accordion("Source code", open=True):
|
110 |
+
gr.Code(_get_demo_code("app_1M_image.py"), language="python")
|
111 |
+
demo.launch()
|
app_1M_image.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import tempfile
|
3 |
+
import zipfile
|
4 |
+
from datetime import datetime
|
5 |
+
from pathlib import Path
|
6 |
+
from uuid import uuid4
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
from huggingface_hub import CommitScheduler, InferenceClient
|
13 |
+
|
14 |
+
|
15 |
+
IMAGE_DATASET_DIR = Path("image_dataset_1M") / f"train-{uuid4()}"
|
16 |
+
|
17 |
+
IMAGE_DATASET_DIR.mkdir(parents=True, exist_ok=True)
|
18 |
+
IMAGE_JSONL_PATH = IMAGE_DATASET_DIR / "metadata.jsonl"
|
19 |
+
|
20 |
+
|
21 |
+
class ZipScheduler(CommitScheduler):
|
22 |
+
"""
|
23 |
+
Example of a custom CommitScheduler with overwritten `push_to_hub` to zip images before pushing them to the Hub.
|
24 |
+
|
25 |
+
Workflow:
|
26 |
+
1. Read metadata + list PNG files.
|
27 |
+
2. Zip png files in a single archive.
|
28 |
+
3. Create commit (metadata + archive).
|
29 |
+
4. Delete local png files to avoid re-uploading them later.
|
30 |
+
|
31 |
+
Only step 1 requires to activate the lock. Once the metadata is read, the lock is released and the rest of the
|
32 |
+
process can be done without blocking the Gradio app.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def push_to_hub(self):
|
36 |
+
# 1. Read metadata + list PNG files
|
37 |
+
with self.lock:
|
38 |
+
png_files = list(self.folder_path.glob("*.png"))
|
39 |
+
if len(png_files) == 0:
|
40 |
+
return None # return early if nothing to commit
|
41 |
+
|
42 |
+
# Read and delete metadata file
|
43 |
+
metadata = IMAGE_JSONL_PATH.read_text()
|
44 |
+
try:
|
45 |
+
IMAGE_JSONL_PATH.unlink()
|
46 |
+
except Exception:
|
47 |
+
pass
|
48 |
+
|
49 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
50 |
+
# 2. Zip png files + metadata in a single archive
|
51 |
+
archive_path = Path(tmpdir) / "train.zip"
|
52 |
+
with zipfile.ZipFile(archive_path, "w", zipfile.ZIP_DEFLATED) as zip:
|
53 |
+
# PNG files
|
54 |
+
for png_file in png_files:
|
55 |
+
zip.write(filename=png_file, arcname=png_file.name)
|
56 |
+
|
57 |
+
# Metadata
|
58 |
+
tmp_metadata = Path(tmpdir) / "metadata.jsonl"
|
59 |
+
tmp_metadata.write_text(metadata)
|
60 |
+
zip.write(filename=tmp_metadata, arcname="metadata.jsonl")
|
61 |
+
|
62 |
+
# 3. Create commit
|
63 |
+
self.api.upload_file(
|
64 |
+
repo_id=self.repo_id,
|
65 |
+
repo_type=self.repo_type,
|
66 |
+
revision=self.revision,
|
67 |
+
path_in_repo=f"train-{uuid4()}.zip",
|
68 |
+
path_or_fileobj=archive_path,
|
69 |
+
)
|
70 |
+
|
71 |
+
# 4. Delete local png files to avoid re-uploading them later
|
72 |
+
for png_file in png_files:
|
73 |
+
try:
|
74 |
+
png_file.unlink()
|
75 |
+
except Exception:
|
76 |
+
pass
|
77 |
+
|
78 |
+
|
79 |
+
scheduler = ZipScheduler(
|
80 |
+
repo_id="example-commit-scheduler-image-zip",
|
81 |
+
repo_type="dataset",
|
82 |
+
folder_path=IMAGE_DATASET_DIR,
|
83 |
+
)
|
84 |
+
|
85 |
+
client = InferenceClient()
|
86 |
+
|
87 |
+
|
88 |
+
def generate_image(prompt: str) -> Image:
|
89 |
+
return client.text_to_image(prompt)
|
90 |
+
|
91 |
+
|
92 |
+
def save_image(prompt: str, image_array: np.ndarray) -> None:
|
93 |
+
print("Saving: " + prompt)
|
94 |
+
image_path = IMAGE_DATASET_DIR / f"{uuid4()}.png"
|
95 |
+
|
96 |
+
with scheduler.lock:
|
97 |
+
Image.fromarray(image_array).save(image_path)
|
98 |
+
with IMAGE_JSONL_PATH.open("a") as f:
|
99 |
+
json.dump({"prompt": prompt, "file_name": image_path.name, "datetime": datetime.now().isoformat()}, f)
|
100 |
+
f.write("\n")
|
101 |
+
|
102 |
+
|
103 |
+
def get_demo():
|
104 |
+
with gr.Row():
|
105 |
+
prompt_value = gr.Textbox(label="Prompt")
|
106 |
+
image_value = gr.Image(label="Generated image")
|
107 |
+
text_to_image_btn = gr.Button("Generate")
|
108 |
+
text_to_image_btn.click(fn=generate_image, inputs=prompt_value, outputs=image_value).success(
|
109 |
+
fn=save_image,
|
110 |
+
inputs=[prompt_value, image_value],
|
111 |
+
outputs=None,
|
112 |
+
)
|
app_image.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from datetime import datetime
|
3 |
+
from pathlib import Path
|
4 |
+
from uuid import uuid4
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from huggingface_hub import CommitScheduler, InferenceClient
|
11 |
+
|
12 |
+
|
13 |
+
IMAGE_DATASET_DIR = Path("image_dataset") / f"train-{uuid4()}"
|
14 |
+
IMAGE_DATASET_DIR.mkdir(parents=True, exist_ok=True)
|
15 |
+
IMAGE_JSONL_PATH = IMAGE_DATASET_DIR / "metadata.jsonl"
|
16 |
+
|
17 |
+
scheduler = CommitScheduler(
|
18 |
+
repo_id="example-commit-scheduler-image",
|
19 |
+
repo_type="dataset",
|
20 |
+
folder_path=IMAGE_DATASET_DIR,
|
21 |
+
path_in_repo=IMAGE_DATASET_DIR.name,
|
22 |
+
)
|
23 |
+
|
24 |
+
client = InferenceClient()
|
25 |
+
|
26 |
+
|
27 |
+
def generate_image(prompt: str) -> Image:
|
28 |
+
return client.text_to_image(prompt)
|
29 |
+
|
30 |
+
|
31 |
+
def save_image(prompt: str, image_array: np.ndarray) -> None:
|
32 |
+
image_path = IMAGE_DATASET_DIR / f"{uuid4()}.png"
|
33 |
+
|
34 |
+
with scheduler.lock:
|
35 |
+
Image.fromarray(image_array).save(image_path)
|
36 |
+
with IMAGE_JSONL_PATH.open("a") as f:
|
37 |
+
json.dump({"prompt": prompt, "file_name": image_path.name, "datetime": datetime.now().isoformat()}, f)
|
38 |
+
f.write("\n")
|
39 |
+
|
40 |
+
|
41 |
+
def get_demo():
|
42 |
+
with gr.Row():
|
43 |
+
prompt_value = gr.Textbox(label="Prompt")
|
44 |
+
image_value = gr.Image(label="Generated image")
|
45 |
+
text_to_image_btn = gr.Button("Generate")
|
46 |
+
text_to_image_btn.click(fn=generate_image, inputs=prompt_value, outputs=image_value).success(
|
47 |
+
fn=save_image,
|
48 |
+
inputs=[prompt_value, image_value],
|
49 |
+
outputs=None,
|
50 |
+
)
|
app_json.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from datetime import datetime
|
3 |
+
from pathlib import Path
|
4 |
+
from uuid import uuid4
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
from huggingface_hub import CommitScheduler
|
9 |
+
|
10 |
+
|
11 |
+
JSON_DATASET_DIR = Path("json_dataset")
|
12 |
+
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
|
13 |
+
|
14 |
+
JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"
|
15 |
+
|
16 |
+
scheduler = CommitScheduler(
|
17 |
+
repo_id="example-commit-scheduler-json",
|
18 |
+
repo_type="dataset",
|
19 |
+
folder_path=JSON_DATASET_DIR,
|
20 |
+
path_in_repo="data",
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def greet(name: str) -> str:
|
25 |
+
return "Hello " + name + "!"
|
26 |
+
|
27 |
+
|
28 |
+
def save_json(name: str, greetings: str) -> None:
|
29 |
+
with scheduler.lock:
|
30 |
+
with JSON_DATASET_PATH.open("a") as f:
|
31 |
+
json.dump({"name": name, "greetings": greetings, "datetime": datetime.now().isoformat()}, f)
|
32 |
+
f.write("\n")
|
33 |
+
|
34 |
+
|
35 |
+
def get_demo():
|
36 |
+
with gr.Row():
|
37 |
+
greet_name = gr.Textbox(label="Name")
|
38 |
+
greet_output = gr.Textbox(label="Greetings")
|
39 |
+
greet_btn = gr.Button("Greet")
|
40 |
+
greet_btn.click(fn=greet, inputs=greet_name, outputs=greet_output).success(
|
41 |
+
fn=save_json,
|
42 |
+
inputs=[greet_name, greet_output],
|
43 |
+
outputs=None,
|
44 |
+
)
|