import streamlit as st from streamlit_chat import message from langchain.chains import ConversationalRetrievalChain from langchain.document_loaders import PyPDFLoader, DirectoryLoader from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import CTransformers from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain_openai import ChatOpenAI from huggingface_hub import login login(token =st.secrets["HF"]) # Function to load documents def load_documents(): loader = DirectoryLoader('data/', glob="*.pdf", loader_cls=PyPDFLoader) documents = loader.load() return documents # Function to split text into chunks def split_text_into_chunks(documents): text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) text_chunks = text_splitter.split_documents(documents) return text_chunks # Function to create embeddings def create_embeddings(): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", model_kwargs={'device': "cpu"}) #embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': "cpu"}) return embeddings # Function to create vector store def create_vector_store(text_chunks, embeddings, nombre_vector): vector_store = FAISS.from_documents(text_chunks, embeddings) vector_store.save_local("cache") #Guardarlo en un return vector_store # Function to create vector store def load_vector_store(nombre_vector, embeddings): return FAISS.load_local(nombre_vector, embeddings) # Function to create LLMS model def create_llms_model(): #llm = CTransformers(model='TheBloke/Mistral-7B-Instruct-v0.1-GGUF', config={'max_new_tokens': 128, 'temperature': 0.01}) llm = ChatOpenAI(model='gpt-3.5-turbo-1106', temperature=0.1) return llm # Initialize Streamlit app st.title("Chatbot usando mistral") # loading of documents documents = load_documents() # Split text into chunks text_chunks = split_text_into_chunks(documents) # Create embeddings embeddings = create_embeddings() try:#load vector store from local vector_store = load_vector_store("cache",embeddings) except:# Create vector store vector_store = create_vector_store(text_chunks, embeddings, "cache") # Create LLMS model llm = create_llms_model() # Initialize conversation history if 'history' not in st.session_state: st.session_state['history'] = [] if 'generated' not in st.session_state: st.session_state['generated'] = ["¡Hola! Pregúntame sobre cualquier cosa 🤗"] if 'past' not in st.session_state: st.session_state['past'] = ["¡Hola! 👋"] # Create memory memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) # Create chain chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff', retriever=vector_store.as_retriever(search_kwargs={"k": 2}), memory=memory) # Define chat function def conversation_chat(query): result = chain({"question": query, "chat_history": st.session_state['history']}) st.session_state['history'].append((query, result["answer"])) return result["answer"] # Display chat history reply_container = st.container() container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_input("Question:", placeholder="Ask about your Job Interview", key='input') submit_button = st.form_submit_button(label='Send') if submit_button and user_input: output = conversation_chat(user_input) st.session_state['past'].append(user_input) st.session_state['generated'].append(output) if st.session_state['generated']: with reply_container: for i in range(len(st.session_state['generated'])): message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")