WSLINMSAI commited on
Commit
e5bfc44
·
verified ·
1 Parent(s): 36562de

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -57
app.py CHANGED
@@ -1,64 +1,56 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Initialize the Hugging Face pipeline with a more advanced model
5
+ # Replace "EleutherAI/gpt-neo-2.7B" with other models like "mosaicml/mpt-7b-chat" or "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
6
+ generation_pipeline = pipeline(
7
+ "text-generation",
8
+ model="EleutherAI/gpt-neo-2.7B", # Replace this with the desired advanced model
9
+ device=0 # Use GPU if available
10
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ def dental_chatbot_response(message, history):
13
+ """
14
+ Responds to user queries with a focus on dental terminology.
15
+ - Dynamically generates responses using an advanced LLM.
16
+ - Designed to address dental-related questions or provide general responses.
17
+ """
18
+ print(f"User Input: {message}")
19
+ print(f"Chat History: {history}")
20
+
21
+ # Add a prompt to guide the LLM's focus on dental terminology
22
+ prompt = (
23
+ f"You are a highly knowledgeable and friendly dental expert chatbot. "
24
+ f"Provide detailed and accurate explanations of dental terms, procedures, and treatments. "
25
+ f"If the query is not dental-related, respond helpfully and informatively.\n\n"
26
+ f"User: {message}\n\n"
27
+ f"Chatbot:"
28
+ )
29
+
30
+ # Generate a response using the LLM
31
+ generated = generation_pipeline(
32
+ prompt,
33
+ max_length=200, # Increase max_length for more detailed responses
34
+ num_return_sequences=1,
35
+ do_sample=True,
36
+ top_p=0.9, # Nucleus sampling for diverse responses
37
+ top_k=50 # Top-k sampling for quality control
38
+ )
39
+
40
+ # Extract the chatbot's response
41
+ ai_response = generated[0]["generated_text"].split("Chatbot:")[1].strip()
42
+ print(f"Dental Chatbot Response: {ai_response}")
43
+ return ai_response
44
+
45
+ # Gradio ChatInterface
46
  demo = gr.ChatInterface(
47
+ fn=dental_chatbot_response,
48
+ title="Advanced Dental Terminology Chatbot",
49
+ description=(
50
+ "Ask me anything about dental terms, procedures, and treatments! "
51
+ "This chatbot is powered by an advanced LLM for detailed and accurate answers."
52
+ )
 
 
 
 
 
 
 
53
  )
54
 
 
55
  if __name__ == "__main__":
56
  demo.launch()