Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,56 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
-
|
| 20 |
-
for val in history:
|
| 21 |
-
if val[0]:
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
-
|
| 26 |
-
messages.append({"role": "user", "content": message})
|
| 27 |
-
|
| 28 |
-
response = ""
|
| 29 |
-
|
| 30 |
-
for message in client.chat_completion(
|
| 31 |
-
messages,
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
demo = gr.ChatInterface(
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
if __name__ == "__main__":
|
| 64 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# Initialize the Hugging Face pipeline with a more advanced model
|
| 5 |
+
# Replace "EleutherAI/gpt-neo-2.7B" with other models like "mosaicml/mpt-7b-chat" or "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
|
| 6 |
+
generation_pipeline = pipeline(
|
| 7 |
+
"text-generation",
|
| 8 |
+
model="EleutherAI/gpt-neo-2.7B", # Replace this with the desired advanced model
|
| 9 |
+
device=0 # Use GPU if available
|
| 10 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
def dental_chatbot_response(message, history):
|
| 13 |
+
"""
|
| 14 |
+
Responds to user queries with a focus on dental terminology.
|
| 15 |
+
- Dynamically generates responses using an advanced LLM.
|
| 16 |
+
- Designed to address dental-related questions or provide general responses.
|
| 17 |
+
"""
|
| 18 |
+
print(f"User Input: {message}")
|
| 19 |
+
print(f"Chat History: {history}")
|
| 20 |
+
|
| 21 |
+
# Add a prompt to guide the LLM's focus on dental terminology
|
| 22 |
+
prompt = (
|
| 23 |
+
f"You are a highly knowledgeable and friendly dental expert chatbot. "
|
| 24 |
+
f"Provide detailed and accurate explanations of dental terms, procedures, and treatments. "
|
| 25 |
+
f"If the query is not dental-related, respond helpfully and informatively.\n\n"
|
| 26 |
+
f"User: {message}\n\n"
|
| 27 |
+
f"Chatbot:"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Generate a response using the LLM
|
| 31 |
+
generated = generation_pipeline(
|
| 32 |
+
prompt,
|
| 33 |
+
max_length=200, # Increase max_length for more detailed responses
|
| 34 |
+
num_return_sequences=1,
|
| 35 |
+
do_sample=True,
|
| 36 |
+
top_p=0.9, # Nucleus sampling for diverse responses
|
| 37 |
+
top_k=50 # Top-k sampling for quality control
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# Extract the chatbot's response
|
| 41 |
+
ai_response = generated[0]["generated_text"].split("Chatbot:")[1].strip()
|
| 42 |
+
print(f"Dental Chatbot Response: {ai_response}")
|
| 43 |
+
return ai_response
|
| 44 |
+
|
| 45 |
+
# Gradio ChatInterface
|
| 46 |
demo = gr.ChatInterface(
|
| 47 |
+
fn=dental_chatbot_response,
|
| 48 |
+
title="Advanced Dental Terminology Chatbot",
|
| 49 |
+
description=(
|
| 50 |
+
"Ask me anything about dental terms, procedures, and treatments! "
|
| 51 |
+
"This chatbot is powered by an advanced LLM for detailed and accurate answers."
|
| 52 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
)
|
| 54 |
|
|
|
|
| 55 |
if __name__ == "__main__":
|
| 56 |
demo.launch()
|