Spaces:
Configuration error
Configuration error
import {Buf8,Buf16,arraySet} from './utils'; | |
import {_tr_flush_block, _tr_tally, _tr_init, _tr_align, _tr_stored_block} from './trees'; | |
import adler32 from './adler32'; | |
import crc32 from './crc32'; | |
import msg from './messages'; | |
/* Public constants ==========================================================*/ | |
/* ===========================================================================*/ | |
/* Allowed flush values; see deflate() and inflate() below for details */ | |
var Z_NO_FLUSH = 0; | |
var Z_PARTIAL_FLUSH = 1; | |
//var Z_SYNC_FLUSH = 2; | |
var Z_FULL_FLUSH = 3; | |
var Z_FINISH = 4; | |
var Z_BLOCK = 5; | |
//var Z_TREES = 6; | |
/* Return codes for the compression/decompression functions. Negative values | |
* are errors, positive values are used for special but normal events. | |
*/ | |
var Z_OK = 0; | |
var Z_STREAM_END = 1; | |
//var Z_NEED_DICT = 2; | |
//var Z_ERRNO = -1; | |
var Z_STREAM_ERROR = -2; | |
var Z_DATA_ERROR = -3; | |
//var Z_MEM_ERROR = -4; | |
var Z_BUF_ERROR = -5; | |
//var Z_VERSION_ERROR = -6; | |
/* compression levels */ | |
//var Z_NO_COMPRESSION = 0; | |
//var Z_BEST_SPEED = 1; | |
//var Z_BEST_COMPRESSION = 9; | |
var Z_DEFAULT_COMPRESSION = -1; | |
var Z_FILTERED = 1; | |
var Z_HUFFMAN_ONLY = 2; | |
var Z_RLE = 3; | |
var Z_FIXED = 4; | |
var Z_DEFAULT_STRATEGY = 0; | |
/* Possible values of the data_type field (though see inflate()) */ | |
//var Z_BINARY = 0; | |
//var Z_TEXT = 1; | |
//var Z_ASCII = 1; // = Z_TEXT | |
var Z_UNKNOWN = 2; | |
/* The deflate compression method */ | |
var Z_DEFLATED = 8; | |
/*============================================================================*/ | |
var MAX_MEM_LEVEL = 9; | |
/* Maximum value for memLevel in deflateInit2 */ | |
var MAX_WBITS = 15; | |
/* 32K LZ77 window */ | |
var DEF_MEM_LEVEL = 8; | |
var LENGTH_CODES = 29; | |
/* number of length codes, not counting the special END_BLOCK code */ | |
var LITERALS = 256; | |
/* number of literal bytes 0..255 */ | |
var L_CODES = LITERALS + 1 + LENGTH_CODES; | |
/* number of Literal or Length codes, including the END_BLOCK code */ | |
var D_CODES = 30; | |
/* number of distance codes */ | |
var BL_CODES = 19; | |
/* number of codes used to transfer the bit lengths */ | |
var HEAP_SIZE = 2 * L_CODES + 1; | |
/* maximum heap size */ | |
var MAX_BITS = 15; | |
/* All codes must not exceed MAX_BITS bits */ | |
var MIN_MATCH = 3; | |
var MAX_MATCH = 258; | |
var MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1); | |
var PRESET_DICT = 0x20; | |
var INIT_STATE = 42; | |
var EXTRA_STATE = 69; | |
var NAME_STATE = 73; | |
var COMMENT_STATE = 91; | |
var HCRC_STATE = 103; | |
var BUSY_STATE = 113; | |
var FINISH_STATE = 666; | |
var BS_NEED_MORE = 1; /* block not completed, need more input or more output */ | |
var BS_BLOCK_DONE = 2; /* block flush performed */ | |
var BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */ | |
var BS_FINISH_DONE = 4; /* finish done, accept no more input or output */ | |
var OS_CODE = 0x03; // Unix :) . Don't detect, use this default. | |
function err(strm, errorCode) { | |
strm.msg = msg[errorCode]; | |
return errorCode; | |
} | |
function rank(f) { | |
return ((f) << 1) - ((f) > 4 ? 9 : 0); | |
} | |
function zero(buf) { | |
var len = buf.length; | |
while (--len >= 0) { | |
buf[len] = 0; | |
} | |
} | |
/* ========================================================================= | |
* Flush as much pending output as possible. All deflate() output goes | |
* through this function so some applications may wish to modify it | |
* to avoid allocating a large strm->output buffer and copying into it. | |
* (See also read_buf()). | |
*/ | |
function flush_pending(strm) { | |
var s = strm.state; | |
//_tr_flush_bits(s); | |
var len = s.pending; | |
if (len > strm.avail_out) { | |
len = strm.avail_out; | |
} | |
if (len === 0) { | |
return; | |
} | |
arraySet(strm.output, s.pending_buf, s.pending_out, len, strm.next_out); | |
strm.next_out += len; | |
s.pending_out += len; | |
strm.total_out += len; | |
strm.avail_out -= len; | |
s.pending -= len; | |
if (s.pending === 0) { | |
s.pending_out = 0; | |
} | |
} | |
function flush_block_only(s, last) { | |
_tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last); | |
s.block_start = s.strstart; | |
flush_pending(s.strm); | |
} | |
function put_byte(s, b) { | |
s.pending_buf[s.pending++] = b; | |
} | |
/* ========================================================================= | |
* Put a short in the pending buffer. The 16-bit value is put in MSB order. | |
* IN assertion: the stream state is correct and there is enough room in | |
* pending_buf. | |
*/ | |
function putShortMSB(s, b) { | |
// put_byte(s, (Byte)(b >> 8)); | |
// put_byte(s, (Byte)(b & 0xff)); | |
s.pending_buf[s.pending++] = (b >>> 8) & 0xff; | |
s.pending_buf[s.pending++] = b & 0xff; | |
} | |
/* =========================================================================== | |
* Read a new buffer from the current input stream, update the adler32 | |
* and total number of bytes read. All deflate() input goes through | |
* this function so some applications may wish to modify it to avoid | |
* allocating a large strm->input buffer and copying from it. | |
* (See also flush_pending()). | |
*/ | |
function read_buf(strm, buf, start, size) { | |
var len = strm.avail_in; | |
if (len > size) { | |
len = size; | |
} | |
if (len === 0) { | |
return 0; | |
} | |
strm.avail_in -= len; | |
// zmemcpy(buf, strm->next_in, len); | |
arraySet(buf, strm.input, strm.next_in, len, start); | |
if (strm.state.wrap === 1) { | |
strm.adler = adler32(strm.adler, buf, len, start); | |
} else if (strm.state.wrap === 2) { | |
strm.adler = crc32(strm.adler, buf, len, start); | |
} | |
strm.next_in += len; | |
strm.total_in += len; | |
return len; | |
} | |
/* =========================================================================== | |
* Set match_start to the longest match starting at the given string and | |
* return its length. Matches shorter or equal to prev_length are discarded, | |
* in which case the result is equal to prev_length and match_start is | |
* garbage. | |
* IN assertions: cur_match is the head of the hash chain for the current | |
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 | |
* OUT assertion: the match length is not greater than s->lookahead. | |
*/ | |
function longest_match(s, cur_match) { | |
var chain_length = s.max_chain_length; /* max hash chain length */ | |
var scan = s.strstart; /* current string */ | |
var match; /* matched string */ | |
var len; /* length of current match */ | |
var best_len = s.prev_length; /* best match length so far */ | |
var nice_match = s.nice_match; /* stop if match long enough */ | |
var limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ? | |
s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0 /*NIL*/ ; | |
var _win = s.window; // shortcut | |
var wmask = s.w_mask; | |
var prev = s.prev; | |
/* Stop when cur_match becomes <= limit. To simplify the code, | |
* we prevent matches with the string of window index 0. | |
*/ | |
var strend = s.strstart + MAX_MATCH; | |
var scan_end1 = _win[scan + best_len - 1]; | |
var scan_end = _win[scan + best_len]; | |
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |
* It is easy to get rid of this optimization if necessary. | |
*/ | |
// Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | |
/* Do not waste too much time if we already have a good match: */ | |
if (s.prev_length >= s.good_match) { | |
chain_length >>= 2; | |
} | |
/* Do not look for matches beyond the end of the input. This is necessary | |
* to make deflate deterministic. | |
*/ | |
if (nice_match > s.lookahead) { | |
nice_match = s.lookahead; | |
} | |
// Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | |
do { | |
// Assert(cur_match < s->strstart, "no future"); | |
match = cur_match; | |
/* Skip to next match if the match length cannot increase | |
* or if the match length is less than 2. Note that the checks below | |
* for insufficient lookahead only occur occasionally for performance | |
* reasons. Therefore uninitialized memory will be accessed, and | |
* conditional jumps will be made that depend on those values. | |
* However the length of the match is limited to the lookahead, so | |
* the output of deflate is not affected by the uninitialized values. | |
*/ | |
if (_win[match + best_len] !== scan_end || | |
_win[match + best_len - 1] !== scan_end1 || | |
_win[match] !== _win[scan] || | |
_win[++match] !== _win[scan + 1]) { | |
continue; | |
} | |
/* The check at best_len-1 can be removed because it will be made | |
* again later. (This heuristic is not always a win.) | |
* It is not necessary to compare scan[2] and match[2] since they | |
* are always equal when the other bytes match, given that | |
* the hash keys are equal and that HASH_BITS >= 8. | |
*/ | |
scan += 2; | |
match++; | |
// Assert(*scan == *match, "match[2]?"); | |
/* We check for insufficient lookahead only every 8th comparison; | |
* the 256th check will be made at strstart+258. | |
*/ | |
do { | |
/*jshint noempty:false*/ | |
} while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | |
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | |
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | |
_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && | |
scan < strend); | |
// Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | |
len = MAX_MATCH - (strend - scan); | |
scan = strend - MAX_MATCH; | |
if (len > best_len) { | |
s.match_start = cur_match; | |
best_len = len; | |
if (len >= nice_match) { | |
break; | |
} | |
scan_end1 = _win[scan + best_len - 1]; | |
scan_end = _win[scan + best_len]; | |
} | |
} while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0); | |
if (best_len <= s.lookahead) { | |
return best_len; | |
} | |
return s.lookahead; | |
} | |
/* =========================================================================== | |
* Fill the window when the lookahead becomes insufficient. | |
* Updates strstart and lookahead. | |
* | |
* IN assertion: lookahead < MIN_LOOKAHEAD | |
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | |
* At least one byte has been read, or avail_in == 0; reads are | |
* performed for at least two bytes (required for the zip translate_eol | |
* option -- not supported here). | |
*/ | |
function fill_window(s) { | |
var _w_size = s.w_size; | |
var p, n, m, more, str; | |
//Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); | |
do { | |
more = s.window_size - s.lookahead - s.strstart; | |
// JS ints have 32 bit, block below not needed | |
/* Deal with !@#$% 64K limit: */ | |
//if (sizeof(int) <= 2) { | |
// if (more == 0 && s->strstart == 0 && s->lookahead == 0) { | |
// more = wsize; | |
// | |
// } else if (more == (unsigned)(-1)) { | |
// /* Very unlikely, but possible on 16 bit machine if | |
// * strstart == 0 && lookahead == 1 (input done a byte at time) | |
// */ | |
// more--; | |
// } | |
//} | |
/* If the window is almost full and there is insufficient lookahead, | |
* move the upper half to the lower one to make room in the upper half. | |
*/ | |
if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) { | |
arraySet(s.window, s.window, _w_size, _w_size, 0); | |
s.match_start -= _w_size; | |
s.strstart -= _w_size; | |
/* we now have strstart >= MAX_DIST */ | |
s.block_start -= _w_size; | |
/* Slide the hash table (could be avoided with 32 bit values | |
at the expense of memory usage). We slide even when level == 0 | |
to keep the hash table consistent if we switch back to level > 0 | |
later. (Using level 0 permanently is not an optimal usage of | |
zlib, so we don't care about this pathological case.) | |
*/ | |
n = s.hash_size; | |
p = n; | |
do { | |
m = s.head[--p]; | |
s.head[p] = (m >= _w_size ? m - _w_size : 0); | |
} while (--n); | |
n = _w_size; | |
p = n; | |
do { | |
m = s.prev[--p]; | |
s.prev[p] = (m >= _w_size ? m - _w_size : 0); | |
/* If n is not on any hash chain, prev[n] is garbage but | |
* its value will never be used. | |
*/ | |
} while (--n); | |
more += _w_size; | |
} | |
if (s.strm.avail_in === 0) { | |
break; | |
} | |
/* If there was no sliding: | |
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | |
* more == window_size - lookahead - strstart | |
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | |
* => more >= window_size - 2*WSIZE + 2 | |
* In the BIG_MEM or MMAP case (not yet supported), | |
* window_size == input_size + MIN_LOOKAHEAD && | |
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | |
* Otherwise, window_size == 2*WSIZE so more >= 2. | |
* If there was sliding, more >= WSIZE. So in all cases, more >= 2. | |
*/ | |
//Assert(more >= 2, "more < 2"); | |
n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more); | |
s.lookahead += n; | |
/* Initialize the hash value now that we have some input: */ | |
if (s.lookahead + s.insert >= MIN_MATCH) { | |
str = s.strstart - s.insert; | |
s.ins_h = s.window[str]; | |
/* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */ | |
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + 1]) & s.hash_mask; | |
//#if MIN_MATCH != 3 | |
// Call update_hash() MIN_MATCH-3 more times | |
//#endif | |
while (s.insert) { | |
/* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ | |
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; | |
s.prev[str & s.w_mask] = s.head[s.ins_h]; | |
s.head[s.ins_h] = str; | |
str++; | |
s.insert--; | |
if (s.lookahead + s.insert < MIN_MATCH) { | |
break; | |
} | |
} | |
} | |
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | |
* but this is not important since only literal bytes will be emitted. | |
*/ | |
} while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0); | |
/* If the WIN_INIT bytes after the end of the current data have never been | |
* written, then zero those bytes in order to avoid memory check reports of | |
* the use of uninitialized (or uninitialised as Julian writes) bytes by | |
* the longest match routines. Update the high water mark for the next | |
* time through here. WIN_INIT is set to MAX_MATCH since the longest match | |
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. | |
*/ | |
// if (s.high_water < s.window_size) { | |
// var curr = s.strstart + s.lookahead; | |
// var init = 0; | |
// | |
// if (s.high_water < curr) { | |
// /* Previous high water mark below current data -- zero WIN_INIT | |
// * bytes or up to end of window, whichever is less. | |
// */ | |
// init = s.window_size - curr; | |
// if (init > WIN_INIT) | |
// init = WIN_INIT; | |
// zmemzero(s->window + curr, (unsigned)init); | |
// s->high_water = curr + init; | |
// } | |
// else if (s->high_water < (ulg)curr + WIN_INIT) { | |
// /* High water mark at or above current data, but below current data | |
// * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up | |
// * to end of window, whichever is less. | |
// */ | |
// init = (ulg)curr + WIN_INIT - s->high_water; | |
// if (init > s->window_size - s->high_water) | |
// init = s->window_size - s->high_water; | |
// zmemzero(s->window + s->high_water, (unsigned)init); | |
// s->high_water += init; | |
// } | |
// } | |
// | |
// Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, | |
// "not enough room for search"); | |
} | |
/* =========================================================================== | |
* Copy without compression as much as possible from the input stream, return | |
* the current block state. | |
* This function does not insert new strings in the dictionary since | |
* uncompressible data is probably not useful. This function is used | |
* only for the level=0 compression option. | |
* NOTE: this function should be optimized to avoid extra copying from | |
* window to pending_buf. | |
*/ | |
function deflate_stored(s, flush) { | |
/* Stored blocks are limited to 0xffff bytes, pending_buf is limited | |
* to pending_buf_size, and each stored block has a 5 byte header: | |
*/ | |
var max_block_size = 0xffff; | |
if (max_block_size > s.pending_buf_size - 5) { | |
max_block_size = s.pending_buf_size - 5; | |
} | |
/* Copy as much as possible from input to output: */ | |
for (;;) { | |
/* Fill the window as much as possible: */ | |
if (s.lookahead <= 1) { | |
//Assert(s->strstart < s->w_size+MAX_DIST(s) || | |
// s->block_start >= (long)s->w_size, "slide too late"); | |
// if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) || | |
// s.block_start >= s.w_size)) { | |
// throw new Error("slide too late"); | |
// } | |
fill_window(s); | |
if (s.lookahead === 0 && flush === Z_NO_FLUSH) { | |
return BS_NEED_MORE; | |
} | |
if (s.lookahead === 0) { | |
break; | |
} | |
/* flush the current block */ | |
} | |
//Assert(s->block_start >= 0L, "block gone"); | |
// if (s.block_start < 0) throw new Error("block gone"); | |
s.strstart += s.lookahead; | |
s.lookahead = 0; | |
/* Emit a stored block if pending_buf will be full: */ | |
var max_start = s.block_start + max_block_size; | |
if (s.strstart === 0 || s.strstart >= max_start) { | |
/* strstart == 0 is possible when wraparound on 16-bit machine */ | |
s.lookahead = s.strstart - max_start; | |
s.strstart = max_start; | |
/*** FLUSH_BLOCK(s, 0); ***/ | |
flush_block_only(s, false); | |
if (s.strm.avail_out === 0) { | |
return BS_NEED_MORE; | |
} | |
/***/ | |
} | |
/* Flush if we may have to slide, otherwise block_start may become | |
* negative and the data will be gone: | |
*/ | |
if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) { | |
/*** FLUSH_BLOCK(s, 0); ***/ | |
flush_block_only(s, false); | |
if (s.strm.avail_out === 0) { | |
return BS_NEED_MORE; | |
} | |
/***/ | |
} | |
} | |
s.insert = 0; | |
if (flush === Z_FINISH) { | |
/*** FLUSH_BLOCK(s, 1); ***/ | |
flush_block_only(s, true); | |
if (s.strm.avail_out === 0) { | |
return BS_FINISH_STARTED; | |
} | |
/***/ | |
return BS_FINISH_DONE; | |
} | |
if (s.strstart > s.block_start) { | |
/*** FLUSH_BLOCK(s, 0); ***/ | |
flush_block_only(s, false); | |
if (s.strm.avail_out === 0) { | |
return BS_NEED_MORE; | |
} | |
/***/ | |
} | |
return BS_NEED_MORE; | |
} | |
/* =========================================================================== | |
* Compress as much as possible from the input stream, return the current | |
* block state. | |
* This function does not perform lazy evaluation of matches and inserts | |
* new strings in the dictionary only for unmatched strings or for short | |
* matches. It is used only for the fast compression options. | |
*/ | |
function deflate_fast(s, flush) { | |
var hash_head; /* head of the hash chain */ | |
var bflush; /* set if current block must be flushed */ | |
for (;;) { | |
/* Make sure that we always have enough lookahead, except | |
* at the end of the input file. We need MAX_MATCH bytes | |
* for the next match, plus MIN_MATCH bytes to insert the | |
* string following the next match. | |
*/ | |
if (s.lookahead < MIN_LOOKAHEAD) { | |
fill_window(s); | |
if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) { | |
return BS_NEED_MORE; | |
} | |
if (s.lookahead === 0) { | |
break; /* flush the current block */ | |
} | |
} | |
/* Insert the string window[strstart .. strstart+2] in the | |
* dictionary, and set hash_head to the head of the hash chain: | |
*/ | |
hash_head = 0 /*NIL*/ ; | |
if (s.lookahead >= MIN_MATCH) { | |
/*** INSERT_STRING(s, s.strstart, hash_head); ***/ | |
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | |
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | |
s.head[s.ins_h] = s.strstart; | |
/***/ | |
} | |
/* Find the longest match, discarding those <= prev_length. | |
* At this point we have always match_length < MIN_MATCH | |
*/ | |
if (hash_head !== 0 /*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) { | |
/* To simplify the code, we prevent matches with the string | |
* of window index 0 (in particular we have to avoid a match | |
* of the string with itself at the start of the input file). | |
*/ | |
s.match_length = longest_match(s, hash_head); | |
/* longest_match() sets match_start */ | |
} | |
if (s.match_length >= MIN_MATCH) { | |
// check_match(s, s.strstart, s.match_start, s.match_length); // for debug only | |
/*** _tr_tally_dist(s, s.strstart - s.match_start, | |
s.match_length - MIN_MATCH, bflush); ***/ | |
bflush = _tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH); | |
s.lookahead -= s.match_length; | |
/* Insert new strings in the hash table only if the match length | |
* is not too large. This saves time but degrades compression. | |
*/ | |
if (s.match_length <= s.max_lazy_match /*max_insert_length*/ && s.lookahead >= MIN_MATCH) { | |
s.match_length--; /* string at strstart already in table */ | |
do { | |
s.strstart++; | |
/*** INSERT_STRING(s, s.strstart, hash_head); ***/ | |
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | |
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | |
s.head[s.ins_h] = s.strstart; | |
/***/ | |
/* strstart never exceeds WSIZE-MAX_MATCH, so there are | |
* always MIN_MATCH bytes ahead. | |
*/ | |
} while (--s.match_length !== 0); | |
s.strstart++; | |
} else { | |
s.strstart += s.match_length; | |
s.match_length = 0; | |
s.ins_h = s.window[s.strstart]; | |
/* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */ | |
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + 1]) & s.hash_mask; | |
//#if MIN_MATCH != 3 | |
// Call UPDATE_HASH() MIN_MATCH-3 more times | |
//#endif | |
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not | |
* matter since it will be recomputed at next deflate call. | |
*/ | |
} | |
} else { | |
/* No match, output a literal byte */ | |
//Tracevv((stderr,"%c", s.window[s.strstart])); | |
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ | |
bflush = _tr_tally(s, 0, s.window[s.strstart]); | |
s.lookahead--; | |
s.strstart++; | |
} | |
if (bflush) { | |
/*** FLUSH_BLOCK(s, 0); ***/ | |
flush_block_only(s, false); | |
if (s.strm.avail_out === 0) { | |
return BS_NEED_MORE; | |
} | |
/***/ | |
} | |
} | |
s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1); | |
if (flush === Z_FINISH) { | |
/*** FLUSH_BLOCK(s, 1); ***/ | |
flush_block_only(s, true); | |
if (s.strm.avail_out === 0) { | |
return BS_FINISH_STARTED; | |
} | |
/***/ | |
return BS_FINISH_DONE; | |
} | |
if (s.last_lit) { | |
/*** FLUSH_BLOCK(s, 0); ***/ | |
flush_block_only(s, false); | |
if (s.strm.avail_out === 0) { | |
return BS_NEED_MORE; | |
} | |
/***/ | |
} | |
return BS_BLOCK_DONE; | |
} | |
/* =========================================================================== | |
* Same as above, but achieves better compression. We use a lazy | |
* evaluation for matches: a match is finally adopted only if there is | |
* no better match at the next window position. | |
*/ | |
function deflate_slow(s, flush) { | |
var hash_head; /* head of hash chain */ | |
var bflush; /* set if current block must be flushed */ | |
var max_insert; | |
/* Process the input block. */ | |
for (;;) { | |
/* Make sure that we always have enough lookahead, except | |
* at the end of the input file. We need MAX_MATCH bytes | |
* for the next match, plus MIN_MATCH bytes to insert the | |
* string following the next match. | |
*/ | |
if (s.lookahead < MIN_LOOKAHEAD) { | |
fill_window(s); | |
if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) { | |
return BS_NEED_MORE; | |
} | |
if (s.lookahead === 0) { | |
break; | |
} /* flush the current block */ | |
} | |
/* Insert the string window[strstart .. strstart+2] in the | |
* dictionary, and set hash_head to the head of the hash chain: | |
*/ | |
hash_head = 0 /*NIL*/ ; | |
if (s.lookahead >= MIN_MATCH) { | |
/*** INSERT_STRING(s, s.strstart, hash_head); ***/ | |
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | |
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | |
s.head[s.ins_h] = s.strstart; | |
/***/ | |
} | |
/* Find the longest match, discarding those <= prev_length. | |
*/ | |
s.prev_length = s.match_length; | |
s.prev_match = s.match_start; | |
s.match_length = MIN_MATCH - 1; | |
if (hash_head !== 0 /*NIL*/ && s.prev_length < s.max_lazy_match && | |
s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD) /*MAX_DIST(s)*/ ) { | |
/* To simplify the code, we prevent matches with the string | |
* of window index 0 (in particular we have to avoid a match | |
* of the string with itself at the start of the input file). | |
*/ | |
s.match_length = longest_match(s, hash_head); | |
/* longest_match() sets match_start */ | |
if (s.match_length <= 5 && | |
(s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096 /*TOO_FAR*/ ))) { | |
/* If prev_match is also MIN_MATCH, match_start is garbage | |
* but we will ignore the current match anyway. | |
*/ | |
s.match_length = MIN_MATCH - 1; | |
} | |
} | |
/* If there was a match at the previous step and the current | |
* match is not better, output the previous match: | |
*/ | |
if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) { | |
max_insert = s.strstart + s.lookahead - MIN_MATCH; | |
/* Do not insert strings in hash table beyond this. */ | |
//check_match(s, s.strstart-1, s.prev_match, s.prev_length); | |
/***_tr_tally_dist(s, s.strstart - 1 - s.prev_match, | |
s.prev_length - MIN_MATCH, bflush);***/ | |
bflush = _tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH); | |
/* Insert in hash table all strings up to the end of the match. | |
* strstart-1 and strstart are already inserted. If there is not | |
* enough lookahead, the last two strings are not inserted in | |
* the hash table. | |
*/ | |
s.lookahead -= s.prev_length - 1; | |
s.prev_length -= 2; | |
do { | |
if (++s.strstart <= max_insert) { | |
/*** INSERT_STRING(s, s.strstart, hash_head); ***/ | |
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; | |
hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; | |
s.head[s.ins_h] = s.strstart; | |
/***/ | |
} | |
} while (--s.prev_length !== 0); | |
s.match_available = 0; | |
s.match_length = MIN_MATCH - 1; | |
s.strstart++; | |
if (bflush) { | |
/*** FLUSH_BLOCK(s, 0); ***/ | |
flush_block_only(s, false); | |
if (s.strm.avail_out === 0) { | |
return BS_NEED_MORE; | |
} | |
/***/ | |
} | |
} else if (s.match_available) { | |
/* If there was no match at the previous position, output a | |
* single literal. If there was a match but the current match | |
* is longer, truncate the previous match to a single literal. | |
*/ | |
//Tracevv((stderr,"%c", s->window[s->strstart-1])); | |
/*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ | |
bflush = _tr_tally(s, 0, s.window[s.strstart - 1]); | |
if (bflush) { | |
/*** FLUSH_BLOCK_ONLY(s, 0) ***/ | |
flush_block_only(s, false); | |
/***/ | |
} | |
s.strstart++; | |
s.lookahead--; | |
if (s.strm.avail_out === 0) { | |
return BS_NEED_MORE; | |
} | |
} else { | |
/* There is no previous match to compare with, wait for | |
* the next step to decide. | |
*/ | |
s.match_available = 1; | |
s.strstart++; | |
s.lookahead--; | |
} | |
} | |
//Assert (flush != Z_NO_FLUSH, "no flush?"); | |
if (s.match_available) { | |
//Tracevv((stderr,"%c", s->window[s->strstart-1])); | |
/*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ | |
bflush = _tr_tally(s, 0, s.window[s.strstart - 1]); | |
s.match_available = 0; | |
} | |
s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1; | |
if (flush === Z_FINISH) { | |
/*** FLUSH_BLOCK(s, 1); ***/ | |
flush_block_only(s, true); | |
if (s.strm.avail_out === 0) { | |
return BS_FINISH_STARTED; | |
} | |
/***/ | |
return BS_FINISH_DONE; | |
} | |
if (s.last_lit) { | |
/*** FLUSH_BLOCK(s, 0); ***/ | |
flush_block_only(s, false); | |
if (s.strm.avail_out === 0) { | |
return BS_NEED_MORE; | |
} | |
/***/ | |
} | |
return BS_BLOCK_DONE; | |
} | |
/* =========================================================================== | |
* For Z_RLE, simply look for runs of bytes, generate matches only of distance | |
* one. Do not maintain a hash table. (It will be regenerated if this run of | |
* deflate switches away from Z_RLE.) | |
*/ | |
function deflate_rle(s, flush) { | |
var bflush; /* set if current block must be flushed */ | |
var prev; /* byte at distance one to match */ | |
var scan, strend; /* scan goes up to strend for length of run */ | |
var _win = s.window; | |
for (;;) { | |
/* Make sure that we always have enough lookahead, except | |
* at the end of the input file. We need MAX_MATCH bytes | |
* for the longest run, plus one for the unrolled loop. | |
*/ | |
if (s.lookahead <= MAX_MATCH) { | |
fill_window(s); | |
if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) { | |
return BS_NEED_MORE; | |
} | |
if (s.lookahead === 0) { | |
break; | |
} /* flush the current block */ | |
} | |
/* See how many times the previous byte repeats */ | |
s.match_length = 0; | |
if (s.lookahead >= MIN_MATCH && s.strstart > 0) { | |
scan = s.strstart - 1; | |
prev = _win[scan]; | |
if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) { | |
strend = s.strstart + MAX_MATCH; | |
do { | |
/*jshint noempty:false*/ | |
} while (prev === _win[++scan] && prev === _win[++scan] && | |
prev === _win[++scan] && prev === _win[++scan] && | |
prev === _win[++scan] && prev === _win[++scan] && | |
prev === _win[++scan] && prev === _win[++scan] && | |
scan < strend); | |
s.match_length = MAX_MATCH - (strend - scan); | |
if (s.match_length > s.lookahead) { | |
s.match_length = s.lookahead; | |
} | |
} | |
//Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); | |
} | |
/* Emit match if have run of MIN_MATCH or longer, else emit literal */ | |
if (s.match_length >= MIN_MATCH) { | |
//check_match(s, s.strstart, s.strstart - 1, s.match_length); | |
/*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/ | |
bflush = _tr_tally(s, 1, s.match_length - MIN_MATCH); | |
s.lookahead -= s.match_length; | |
s.strstart += s.match_length; | |
s.match_length = 0; | |
} else { | |
/* No match, output a literal byte */ | |
//Tracevv((stderr,"%c", s->window[s->strstart])); | |
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ | |
bflush = _tr_tally(s, 0, s.window[s.strstart]); | |
s.lookahead--; | |
s.strstart++; | |
} | |
if (bflush) { | |
/*** FLUSH_BLOCK(s, 0); ***/ | |
flush_block_only(s, false); | |
if (s.strm.avail_out === 0) { | |
return BS_NEED_MORE; | |
} | |
/***/ | |
} | |
} | |
s.insert = 0; | |
if (flush === Z_FINISH) { | |
/*** FLUSH_BLOCK(s, 1); ***/ | |
flush_block_only(s, true); | |
if (s.strm.avail_out === 0) { | |
return BS_FINISH_STARTED; | |
} | |
/***/ | |
return BS_FINISH_DONE; | |
} | |
if (s.last_lit) { | |
/*** FLUSH_BLOCK(s, 0); ***/ | |
flush_block_only(s, false); | |
if (s.strm.avail_out === 0) { | |
return BS_NEED_MORE; | |
} | |
/***/ | |
} | |
return BS_BLOCK_DONE; | |
} | |
/* =========================================================================== | |
* For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. | |
* (It will be regenerated if this run of deflate switches away from Huffman.) | |
*/ | |
function deflate_huff(s, flush) { | |
var bflush; /* set if current block must be flushed */ | |
for (;;) { | |
/* Make sure that we have a literal to write. */ | |
if (s.lookahead === 0) { | |
fill_window(s); | |
if (s.lookahead === 0) { | |
if (flush === Z_NO_FLUSH) { | |
return BS_NEED_MORE; | |
} | |
break; /* flush the current block */ | |
} | |
} | |
/* Output a literal byte */ | |
s.match_length = 0; | |
//Tracevv((stderr,"%c", s->window[s->strstart])); | |
/*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ | |
bflush = _tr_tally(s, 0, s.window[s.strstart]); | |
s.lookahead--; | |
s.strstart++; | |
if (bflush) { | |
/*** FLUSH_BLOCK(s, 0); ***/ | |
flush_block_only(s, false); | |
if (s.strm.avail_out === 0) { | |
return BS_NEED_MORE; | |
} | |
/***/ | |
} | |
} | |
s.insert = 0; | |
if (flush === Z_FINISH) { | |
/*** FLUSH_BLOCK(s, 1); ***/ | |
flush_block_only(s, true); | |
if (s.strm.avail_out === 0) { | |
return BS_FINISH_STARTED; | |
} | |
/***/ | |
return BS_FINISH_DONE; | |
} | |
if (s.last_lit) { | |
/*** FLUSH_BLOCK(s, 0); ***/ | |
flush_block_only(s, false); | |
if (s.strm.avail_out === 0) { | |
return BS_NEED_MORE; | |
} | |
/***/ | |
} | |
return BS_BLOCK_DONE; | |
} | |
/* Values for max_lazy_match, good_match and max_chain_length, depending on | |
* the desired pack level (0..9). The values given below have been tuned to | |
* exclude worst case performance for pathological files. Better values may be | |
* found for specific files. | |
*/ | |
function Config(good_length, max_lazy, nice_length, max_chain, func) { | |
this.good_length = good_length; | |
this.max_lazy = max_lazy; | |
this.nice_length = nice_length; | |
this.max_chain = max_chain; | |
this.func = func; | |
} | |
var configuration_table; | |
configuration_table = [ | |
/* good lazy nice chain */ | |
new Config(0, 0, 0, 0, deflate_stored), /* 0 store only */ | |
new Config(4, 4, 8, 4, deflate_fast), /* 1 max speed, no lazy matches */ | |
new Config(4, 5, 16, 8, deflate_fast), /* 2 */ | |
new Config(4, 6, 32, 32, deflate_fast), /* 3 */ | |
new Config(4, 4, 16, 16, deflate_slow), /* 4 lazy matches */ | |
new Config(8, 16, 32, 32, deflate_slow), /* 5 */ | |
new Config(8, 16, 128, 128, deflate_slow), /* 6 */ | |
new Config(8, 32, 128, 256, deflate_slow), /* 7 */ | |
new Config(32, 128, 258, 1024, deflate_slow), /* 8 */ | |
new Config(32, 258, 258, 4096, deflate_slow) /* 9 max compression */ | |
]; | |
/* =========================================================================== | |
* Initialize the "longest match" routines for a new zlib stream | |
*/ | |
function lm_init(s) { | |
s.window_size = 2 * s.w_size; | |
/*** CLEAR_HASH(s); ***/ | |
zero(s.head); // Fill with NIL (= 0); | |
/* Set the default configuration parameters: | |
*/ | |
s.max_lazy_match = configuration_table[s.level].max_lazy; | |
s.good_match = configuration_table[s.level].good_length; | |
s.nice_match = configuration_table[s.level].nice_length; | |
s.max_chain_length = configuration_table[s.level].max_chain; | |
s.strstart = 0; | |
s.block_start = 0; | |
s.lookahead = 0; | |
s.insert = 0; | |
s.match_length = s.prev_length = MIN_MATCH - 1; | |
s.match_available = 0; | |
s.ins_h = 0; | |
} | |
function DeflateState() { | |
this.strm = null; /* pointer back to this zlib stream */ | |
this.status = 0; /* as the name implies */ | |
this.pending_buf = null; /* output still pending */ | |
this.pending_buf_size = 0; /* size of pending_buf */ | |
this.pending_out = 0; /* next pending byte to output to the stream */ | |
this.pending = 0; /* nb of bytes in the pending buffer */ | |
this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */ | |
this.gzhead = null; /* gzip header information to write */ | |
this.gzindex = 0; /* where in extra, name, or comment */ | |
this.method = Z_DEFLATED; /* can only be DEFLATED */ | |
this.last_flush = -1; /* value of flush param for previous deflate call */ | |
this.w_size = 0; /* LZ77 window size (32K by default) */ | |
this.w_bits = 0; /* log2(w_size) (8..16) */ | |
this.w_mask = 0; /* w_size - 1 */ | |
this.window = null; | |
/* Sliding window. Input bytes are read into the second half of the window, | |
* and move to the first half later to keep a dictionary of at least wSize | |
* bytes. With this organization, matches are limited to a distance of | |
* wSize-MAX_MATCH bytes, but this ensures that IO is always | |
* performed with a length multiple of the block size. | |
*/ | |
this.window_size = 0; | |
/* Actual size of window: 2*wSize, except when the user input buffer | |
* is directly used as sliding window. | |
*/ | |
this.prev = null; | |
/* Link to older string with same hash index. To limit the size of this | |
* array to 64K, this link is maintained only for the last 32K strings. | |
* An index in this array is thus a window index modulo 32K. | |
*/ | |
this.head = null; /* Heads of the hash chains or NIL. */ | |
this.ins_h = 0; /* hash index of string to be inserted */ | |
this.hash_size = 0; /* number of elements in hash table */ | |
this.hash_bits = 0; /* log2(hash_size) */ | |
this.hash_mask = 0; /* hash_size-1 */ | |
this.hash_shift = 0; | |
/* Number of bits by which ins_h must be shifted at each input | |
* step. It must be such that after MIN_MATCH steps, the oldest | |
* byte no longer takes part in the hash key, that is: | |
* hash_shift * MIN_MATCH >= hash_bits | |
*/ | |
this.block_start = 0; | |
/* Window position at the beginning of the current output block. Gets | |
* negative when the window is moved backwards. | |
*/ | |
this.match_length = 0; /* length of best match */ | |
this.prev_match = 0; /* previous match */ | |
this.match_available = 0; /* set if previous match exists */ | |
this.strstart = 0; /* start of string to insert */ | |
this.match_start = 0; /* start of matching string */ | |
this.lookahead = 0; /* number of valid bytes ahead in window */ | |
this.prev_length = 0; | |
/* Length of the best match at previous step. Matches not greater than this | |
* are discarded. This is used in the lazy match evaluation. | |
*/ | |
this.max_chain_length = 0; | |
/* To speed up deflation, hash chains are never searched beyond this | |
* length. A higher limit improves compression ratio but degrades the | |
* speed. | |
*/ | |
this.max_lazy_match = 0; | |
/* Attempt to find a better match only when the current match is strictly | |
* smaller than this value. This mechanism is used only for compression | |
* levels >= 4. | |
*/ | |
// That's alias to max_lazy_match, don't use directly | |
//this.max_insert_length = 0; | |
/* Insert new strings in the hash table only if the match length is not | |
* greater than this length. This saves time but degrades compression. | |
* max_insert_length is used only for compression levels <= 3. | |
*/ | |
this.level = 0; /* compression level (1..9) */ | |
this.strategy = 0; /* favor or force Huffman coding*/ | |
this.good_match = 0; | |
/* Use a faster search when the previous match is longer than this */ | |
this.nice_match = 0; /* Stop searching when current match exceeds this */ | |
/* used by c: */ | |
/* Didn't use ct_data typedef below to suppress compiler warning */ | |
// struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ | |
// struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ | |
// struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ | |
// Use flat array of DOUBLE size, with interleaved fata, | |
// because JS does not support effective | |
this.dyn_ltree = new Buf16(HEAP_SIZE * 2); | |
this.dyn_dtree = new Buf16((2 * D_CODES + 1) * 2); | |
this.bl_tree = new Buf16((2 * BL_CODES + 1) * 2); | |
zero(this.dyn_ltree); | |
zero(this.dyn_dtree); | |
zero(this.bl_tree); | |
this.l_desc = null; /* desc. for literal tree */ | |
this.d_desc = null; /* desc. for distance tree */ | |
this.bl_desc = null; /* desc. for bit length tree */ | |
//ush bl_count[MAX_BITS+1]; | |
this.bl_count = new Buf16(MAX_BITS + 1); | |
/* number of codes at each bit length for an optimal tree */ | |
//int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ | |
this.heap = new Buf16(2 * L_CODES + 1); /* heap used to build the Huffman trees */ | |
zero(this.heap); | |
this.heap_len = 0; /* number of elements in the heap */ | |
this.heap_max = 0; /* element of largest frequency */ | |
/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. | |
* The same heap array is used to build all | |
*/ | |
this.depth = new Buf16(2 * L_CODES + 1); //uch depth[2*L_CODES+1]; | |
zero(this.depth); | |
/* Depth of each subtree used as tie breaker for trees of equal frequency | |
*/ | |
this.l_buf = 0; /* buffer index for literals or lengths */ | |
this.lit_bufsize = 0; | |
/* Size of match buffer for literals/lengths. There are 4 reasons for | |
* limiting lit_bufsize to 64K: | |
* - frequencies can be kept in 16 bit counters | |
* - if compression is not successful for the first block, all input | |
* data is still in the window so we can still emit a stored block even | |
* when input comes from standard input. (This can also be done for | |
* all blocks if lit_bufsize is not greater than 32K.) | |
* - if compression is not successful for a file smaller than 64K, we can | |
* even emit a stored file instead of a stored block (saving 5 bytes). | |
* This is applicable only for zip (not gzip or zlib). | |
* - creating new Huffman trees less frequently may not provide fast | |
* adaptation to changes in the input data statistics. (Take for | |
* example a binary file with poorly compressible code followed by | |
* a highly compressible string table.) Smaller buffer sizes give | |
* fast adaptation but have of course the overhead of transmitting | |
* trees more frequently. | |
* - I can't count above 4 | |
*/ | |
this.last_lit = 0; /* running index in l_buf */ | |
this.d_buf = 0; | |
/* Buffer index for distances. To simplify the code, d_buf and l_buf have | |
* the same number of elements. To use different lengths, an extra flag | |
* array would be necessary. | |
*/ | |
this.opt_len = 0; /* bit length of current block with optimal trees */ | |
this.static_len = 0; /* bit length of current block with static trees */ | |
this.matches = 0; /* number of string matches in current block */ | |
this.insert = 0; /* bytes at end of window left to insert */ | |
this.bi_buf = 0; | |
/* Output buffer. bits are inserted starting at the bottom (least | |
* significant bits). | |
*/ | |
this.bi_valid = 0; | |
/* Number of valid bits in bi_buf. All bits above the last valid bit | |
* are always zero. | |
*/ | |
// Used for window memory init. We safely ignore it for JS. That makes | |
// sense only for pointers and memory check tools. | |
//this.high_water = 0; | |
/* High water mark offset in window for initialized bytes -- bytes above | |
* this are set to zero in order to avoid memory check warnings when | |
* longest match routines access bytes past the input. This is then | |
* updated to the new high water mark. | |
*/ | |
} | |
export function deflateResetKeep(strm) { | |
var s; | |
if (!strm || !strm.state) { | |
return err(strm, Z_STREAM_ERROR); | |
} | |
strm.total_in = strm.total_out = 0; | |
strm.data_type = Z_UNKNOWN; | |
s = strm.state; | |
s.pending = 0; | |
s.pending_out = 0; | |
if (s.wrap < 0) { | |
s.wrap = -s.wrap; | |
/* was made negative by deflate(..., Z_FINISH); */ | |
} | |
s.status = (s.wrap ? INIT_STATE : BUSY_STATE); | |
strm.adler = (s.wrap === 2) ? | |
0 // crc32(0, Z_NULL, 0) | |
: | |
1; // adler32(0, Z_NULL, 0) | |
s.last_flush = Z_NO_FLUSH; | |
_tr_init(s); | |
return Z_OK; | |
} | |
export function deflateReset(strm) { | |
var ret = deflateResetKeep(strm); | |
if (ret === Z_OK) { | |
lm_init(strm.state); | |
} | |
return ret; | |
} | |
export function deflateSetHeader(strm, head) { | |
if (!strm || !strm.state) { | |
return Z_STREAM_ERROR; | |
} | |
if (strm.state.wrap !== 2) { | |
return Z_STREAM_ERROR; | |
} | |
strm.state.gzhead = head; | |
return Z_OK; | |
} | |
export function deflateInit2(strm, level, method, windowBits, memLevel, strategy) { | |
if (!strm) { // === Z_NULL | |
return Z_STREAM_ERROR; | |
} | |
var wrap = 1; | |
if (level === Z_DEFAULT_COMPRESSION) { | |
level = 6; | |
} | |
if (windowBits < 0) { /* suppress zlib wrapper */ | |
wrap = 0; | |
windowBits = -windowBits; | |
} else if (windowBits > 15) { | |
wrap = 2; /* write gzip wrapper instead */ | |
windowBits -= 16; | |
} | |
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED || | |
windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || | |
strategy < 0 || strategy > Z_FIXED) { | |
return err(strm, Z_STREAM_ERROR); | |
} | |
if (windowBits === 8) { | |
windowBits = 9; | |
} | |
/* until 256-byte window bug fixed */ | |
var s = new DeflateState(); | |
strm.state = s; | |
s.strm = strm; | |
s.wrap = wrap; | |
s.gzhead = null; | |
s.w_bits = windowBits; | |
s.w_size = 1 << s.w_bits; | |
s.w_mask = s.w_size - 1; | |
s.hash_bits = memLevel + 7; | |
s.hash_size = 1 << s.hash_bits; | |
s.hash_mask = s.hash_size - 1; | |
s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH); | |
s.window = new Buf8(s.w_size * 2); | |
s.head = new Buf16(s.hash_size); | |
s.prev = new Buf16(s.w_size); | |
// Don't need mem init magic for JS. | |
//s.high_water = 0; /* nothing written to s->window yet */ | |
s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ | |
s.pending_buf_size = s.lit_bufsize * 4; | |
//overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); | |
//s->pending_buf = (uchf *) overlay; | |
s.pending_buf = new Buf8(s.pending_buf_size); | |
// It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`) | |
//s->d_buf = overlay + s->lit_bufsize/sizeof(ush); | |
s.d_buf = 1 * s.lit_bufsize; | |
//s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; | |
s.l_buf = (1 + 2) * s.lit_bufsize; | |
s.level = level; | |
s.strategy = strategy; | |
s.method = method; | |
return deflateReset(strm); | |
} | |
export function deflateInit(strm, level) { | |
return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY); | |
} | |
export function deflate(strm, flush) { | |
var old_flush, s; | |
var beg, val; // for gzip header write only | |
if (!strm || !strm.state || | |
flush > Z_BLOCK || flush < 0) { | |
return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR; | |
} | |
s = strm.state; | |
if (!strm.output || | |
(!strm.input && strm.avail_in !== 0) || | |
(s.status === FINISH_STATE && flush !== Z_FINISH)) { | |
return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR); | |
} | |
s.strm = strm; /* just in case */ | |
old_flush = s.last_flush; | |
s.last_flush = flush; | |
/* Write the header */ | |
if (s.status === INIT_STATE) { | |
if (s.wrap === 2) { | |
// GZIP header | |
strm.adler = 0; //crc32(0L, Z_NULL, 0); | |
put_byte(s, 31); | |
put_byte(s, 139); | |
put_byte(s, 8); | |
if (!s.gzhead) { // s->gzhead == Z_NULL | |
put_byte(s, 0); | |
put_byte(s, 0); | |
put_byte(s, 0); | |
put_byte(s, 0); | |
put_byte(s, 0); | |
put_byte(s, s.level === 9 ? 2 : | |
(s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? | |
4 : 0)); | |
put_byte(s, OS_CODE); | |
s.status = BUSY_STATE; | |
} else { | |
put_byte(s, (s.gzhead.text ? 1 : 0) + | |
(s.gzhead.hcrc ? 2 : 0) + | |
(!s.gzhead.extra ? 0 : 4) + | |
(!s.gzhead.name ? 0 : 8) + | |
(!s.gzhead.comment ? 0 : 16) | |
); | |
put_byte(s, s.gzhead.time & 0xff); | |
put_byte(s, (s.gzhead.time >> 8) & 0xff); | |
put_byte(s, (s.gzhead.time >> 16) & 0xff); | |
put_byte(s, (s.gzhead.time >> 24) & 0xff); | |
put_byte(s, s.level === 9 ? 2 : | |
(s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? | |
4 : 0)); | |
put_byte(s, s.gzhead.os & 0xff); | |
if (s.gzhead.extra && s.gzhead.extra.length) { | |
put_byte(s, s.gzhead.extra.length & 0xff); | |
put_byte(s, (s.gzhead.extra.length >> 8) & 0xff); | |
} | |
if (s.gzhead.hcrc) { | |
strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0); | |
} | |
s.gzindex = 0; | |
s.status = EXTRA_STATE; | |
} | |
} else // DEFLATE header | |
{ | |
var header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8; | |
var level_flags = -1; | |
if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) { | |
level_flags = 0; | |
} else if (s.level < 6) { | |
level_flags = 1; | |
} else if (s.level === 6) { | |
level_flags = 2; | |
} else { | |
level_flags = 3; | |
} | |
header |= (level_flags << 6); | |
if (s.strstart !== 0) { | |
header |= PRESET_DICT; | |
} | |
header += 31 - (header % 31); | |
s.status = BUSY_STATE; | |
putShortMSB(s, header); | |
/* Save the adler32 of the preset dictionary: */ | |
if (s.strstart !== 0) { | |
putShortMSB(s, strm.adler >>> 16); | |
putShortMSB(s, strm.adler & 0xffff); | |
} | |
strm.adler = 1; // adler32(0L, Z_NULL, 0); | |
} | |
} | |
//#ifdef GZIP | |
if (s.status === EXTRA_STATE) { | |
if (s.gzhead.extra /* != Z_NULL*/ ) { | |
beg = s.pending; /* start of bytes to update crc */ | |
while (s.gzindex < (s.gzhead.extra.length & 0xffff)) { | |
if (s.pending === s.pending_buf_size) { | |
if (s.gzhead.hcrc && s.pending > beg) { | |
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | |
} | |
flush_pending(strm); | |
beg = s.pending; | |
if (s.pending === s.pending_buf_size) { | |
break; | |
} | |
} | |
put_byte(s, s.gzhead.extra[s.gzindex] & 0xff); | |
s.gzindex++; | |
} | |
if (s.gzhead.hcrc && s.pending > beg) { | |
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | |
} | |
if (s.gzindex === s.gzhead.extra.length) { | |
s.gzindex = 0; | |
s.status = NAME_STATE; | |
} | |
} else { | |
s.status = NAME_STATE; | |
} | |
} | |
if (s.status === NAME_STATE) { | |
if (s.gzhead.name /* != Z_NULL*/ ) { | |
beg = s.pending; /* start of bytes to update crc */ | |
//int val; | |
do { | |
if (s.pending === s.pending_buf_size) { | |
if (s.gzhead.hcrc && s.pending > beg) { | |
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | |
} | |
flush_pending(strm); | |
beg = s.pending; | |
if (s.pending === s.pending_buf_size) { | |
val = 1; | |
break; | |
} | |
} | |
// JS specific: little magic to add zero terminator to end of string | |
if (s.gzindex < s.gzhead.name.length) { | |
val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff; | |
} else { | |
val = 0; | |
} | |
put_byte(s, val); | |
} while (val !== 0); | |
if (s.gzhead.hcrc && s.pending > beg) { | |
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | |
} | |
if (val === 0) { | |
s.gzindex = 0; | |
s.status = COMMENT_STATE; | |
} | |
} else { | |
s.status = COMMENT_STATE; | |
} | |
} | |
if (s.status === COMMENT_STATE) { | |
if (s.gzhead.comment /* != Z_NULL*/ ) { | |
beg = s.pending; /* start of bytes to update crc */ | |
//int val; | |
do { | |
if (s.pending === s.pending_buf_size) { | |
if (s.gzhead.hcrc && s.pending > beg) { | |
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | |
} | |
flush_pending(strm); | |
beg = s.pending; | |
if (s.pending === s.pending_buf_size) { | |
val = 1; | |
break; | |
} | |
} | |
// JS specific: little magic to add zero terminator to end of string | |
if (s.gzindex < s.gzhead.comment.length) { | |
val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff; | |
} else { | |
val = 0; | |
} | |
put_byte(s, val); | |
} while (val !== 0); | |
if (s.gzhead.hcrc && s.pending > beg) { | |
strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); | |
} | |
if (val === 0) { | |
s.status = HCRC_STATE; | |
} | |
} else { | |
s.status = HCRC_STATE; | |
} | |
} | |
if (s.status === HCRC_STATE) { | |
if (s.gzhead.hcrc) { | |
if (s.pending + 2 > s.pending_buf_size) { | |
flush_pending(strm); | |
} | |
if (s.pending + 2 <= s.pending_buf_size) { | |
put_byte(s, strm.adler & 0xff); | |
put_byte(s, (strm.adler >> 8) & 0xff); | |
strm.adler = 0; //crc32(0L, Z_NULL, 0); | |
s.status = BUSY_STATE; | |
} | |
} else { | |
s.status = BUSY_STATE; | |
} | |
} | |
//#endif | |
/* Flush as much pending output as possible */ | |
if (s.pending !== 0) { | |
flush_pending(strm); | |
if (strm.avail_out === 0) { | |
/* Since avail_out is 0, deflate will be called again with | |
* more output space, but possibly with both pending and | |
* avail_in equal to zero. There won't be anything to do, | |
* but this is not an error situation so make sure we | |
* return OK instead of BUF_ERROR at next call of deflate: | |
*/ | |
s.last_flush = -1; | |
return Z_OK; | |
} | |
/* Make sure there is something to do and avoid duplicate consecutive | |
* flushes. For repeated and useless calls with Z_FINISH, we keep | |
* returning Z_STREAM_END instead of Z_BUF_ERROR. | |
*/ | |
} else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) && | |
flush !== Z_FINISH) { | |
return err(strm, Z_BUF_ERROR); | |
} | |
/* User must not provide more input after the first FINISH: */ | |
if (s.status === FINISH_STATE && strm.avail_in !== 0) { | |
return err(strm, Z_BUF_ERROR); | |
} | |
/* Start a new block or continue the current one. | |
*/ | |
if (strm.avail_in !== 0 || s.lookahead !== 0 || | |
(flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) { | |
var bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) : | |
(s.strategy === Z_RLE ? deflate_rle(s, flush) : | |
configuration_table[s.level].func(s, flush)); | |
if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) { | |
s.status = FINISH_STATE; | |
} | |
if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) { | |
if (strm.avail_out === 0) { | |
s.last_flush = -1; | |
/* avoid BUF_ERROR next call, see above */ | |
} | |
return Z_OK; | |
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call | |
* of deflate should use the same flush parameter to make sure | |
* that the flush is complete. So we don't have to output an | |
* empty block here, this will be done at next call. This also | |
* ensures that for a very small output buffer, we emit at most | |
* one empty block. | |
*/ | |
} | |
if (bstate === BS_BLOCK_DONE) { | |
if (flush === Z_PARTIAL_FLUSH) { | |
_tr_align(s); | |
} else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ | |
_tr_stored_block(s, 0, 0, false); | |
/* For a full flush, this empty block will be recognized | |
* as a special marker by inflate_sync(). | |
*/ | |
if (flush === Z_FULL_FLUSH) { | |
/*** CLEAR_HASH(s); ***/ | |
/* forget history */ | |
zero(s.head); // Fill with NIL (= 0); | |
if (s.lookahead === 0) { | |
s.strstart = 0; | |
s.block_start = 0; | |
s.insert = 0; | |
} | |
} | |
} | |
flush_pending(strm); | |
if (strm.avail_out === 0) { | |
s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */ | |
return Z_OK; | |
} | |
} | |
} | |
//Assert(strm->avail_out > 0, "bug2"); | |
//if (strm.avail_out <= 0) { throw new Error("bug2");} | |
if (flush !== Z_FINISH) { | |
return Z_OK; | |
} | |
if (s.wrap <= 0) { | |
return Z_STREAM_END; | |
} | |
/* Write the trailer */ | |
if (s.wrap === 2) { | |
put_byte(s, strm.adler & 0xff); | |
put_byte(s, (strm.adler >> 8) & 0xff); | |
put_byte(s, (strm.adler >> 16) & 0xff); | |
put_byte(s, (strm.adler >> 24) & 0xff); | |
put_byte(s, strm.total_in & 0xff); | |
put_byte(s, (strm.total_in >> 8) & 0xff); | |
put_byte(s, (strm.total_in >> 16) & 0xff); | |
put_byte(s, (strm.total_in >> 24) & 0xff); | |
} else { | |
putShortMSB(s, strm.adler >>> 16); | |
putShortMSB(s, strm.adler & 0xffff); | |
} | |
flush_pending(strm); | |
/* If avail_out is zero, the application will call deflate again | |
* to flush the rest. | |
*/ | |
if (s.wrap > 0) { | |
s.wrap = -s.wrap; | |
} | |
/* write the trailer only once! */ | |
return s.pending !== 0 ? Z_OK : Z_STREAM_END; | |
} | |
export function deflateEnd(strm) { | |
var status; | |
if (!strm /*== Z_NULL*/ || !strm.state /*== Z_NULL*/ ) { | |
return Z_STREAM_ERROR; | |
} | |
status = strm.state.status; | |
if (status !== INIT_STATE && | |
status !== EXTRA_STATE && | |
status !== NAME_STATE && | |
status !== COMMENT_STATE && | |
status !== HCRC_STATE && | |
status !== BUSY_STATE && | |
status !== FINISH_STATE | |
) { | |
return err(strm, Z_STREAM_ERROR); | |
} | |
strm.state = null; | |
return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK; | |
} | |
/* ========================================================================= | |
* Initializes the compression dictionary from the given byte | |
* sequence without producing any compressed output. | |
*/ | |
export function deflateSetDictionary(strm, dictionary) { | |
var dictLength = dictionary.length; | |
var s; | |
var str, n; | |
var wrap; | |
var avail; | |
var next; | |
var input; | |
var tmpDict; | |
if (!strm /*== Z_NULL*/ || !strm.state /*== Z_NULL*/ ) { | |
return Z_STREAM_ERROR; | |
} | |
s = strm.state; | |
wrap = s.wrap; | |
if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) { | |
return Z_STREAM_ERROR; | |
} | |
/* when using zlib wrappers, compute Adler-32 for provided dictionary */ | |
if (wrap === 1) { | |
/* adler32(strm->adler, dictionary, dictLength); */ | |
strm.adler = adler32(strm.adler, dictionary, dictLength, 0); | |
} | |
s.wrap = 0; /* avoid computing Adler-32 in read_buf */ | |
/* if dictionary would fill window, just replace the history */ | |
if (dictLength >= s.w_size) { | |
if (wrap === 0) { /* already empty otherwise */ | |
/*** CLEAR_HASH(s); ***/ | |
zero(s.head); // Fill with NIL (= 0); | |
s.strstart = 0; | |
s.block_start = 0; | |
s.insert = 0; | |
} | |
/* use the tail */ | |
// dictionary = dictionary.slice(dictLength - s.w_size); | |
tmpDict = new Buf8(s.w_size); | |
arraySet(tmpDict, dictionary, dictLength - s.w_size, s.w_size, 0); | |
dictionary = tmpDict; | |
dictLength = s.w_size; | |
} | |
/* insert dictionary into window and hash */ | |
avail = strm.avail_in; | |
next = strm.next_in; | |
input = strm.input; | |
strm.avail_in = dictLength; | |
strm.next_in = 0; | |
strm.input = dictionary; | |
fill_window(s); | |
while (s.lookahead >= MIN_MATCH) { | |
str = s.strstart; | |
n = s.lookahead - (MIN_MATCH - 1); | |
do { | |
/* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ | |
s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; | |
s.prev[str & s.w_mask] = s.head[s.ins_h]; | |
s.head[s.ins_h] = str; | |
str++; | |
} while (--n); | |
s.strstart = str; | |
s.lookahead = MIN_MATCH - 1; | |
fill_window(s); | |
} | |
s.strstart += s.lookahead; | |
s.block_start = s.strstart; | |
s.insert = s.lookahead; | |
s.lookahead = 0; | |
s.match_length = s.prev_length = MIN_MATCH - 1; | |
s.match_available = 0; | |
strm.next_in = next; | |
strm.input = input; | |
strm.avail_in = avail; | |
s.wrap = wrap; | |
return Z_OK; | |
} | |
export var deflateInfo = 'pako deflate (from Nodeca project)'; | |
/* Not implemented | |
exports.deflateBound = deflateBound; | |
exports.deflateCopy = deflateCopy; | |
exports.deflateParams = deflateParams; | |
exports.deflatePending = deflatePending; | |
exports.deflatePrime = deflatePrime; | |
exports.deflateTune = deflateTune; | |
*/ | |