# Copied from https://github.com/kq-chen/qwen-vl-utils
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
from __future__ import annotations

import base64
import logging
import math
import os
import sys
import time
import warnings
from functools import lru_cache
from io import BytesIO

import requests
import torch
import torchvision
from packaging import version
from PIL import Image
from torchvision import io, transforms
from torchvision.transforms import InterpolationMode

logger = logging.getLogger(__name__)

IMAGE_FACTOR = 28
MIN_PIXELS = 4 * 28 * 28
MAX_PIXELS = 16384 * 28 * 28
MAX_RATIO = 200

VIDEO_MIN_PIXELS = 128 * 28 * 28
VIDEO_MAX_PIXELS = 768 * 28 * 28
VIDEO_TOTAL_PIXELS = 24576 * 28 * 28
FRAME_FACTOR = 2
FPS = 2.0
FPS_MIN_FRAMES = 4
FPS_MAX_FRAMES = 768


def round_by_factor(number: int, factor: int) -> int:
    """Returns the closest integer to 'number' that is divisible by 'factor'."""
    return round(number / factor) * factor


def ceil_by_factor(number: int, factor: int) -> int:
    """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
    return math.ceil(number / factor) * factor


def floor_by_factor(number: int, factor: int) -> int:
    """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
    return math.floor(number / factor) * factor


def smart_resize(height: int,
                 width: int,
                 factor: int = IMAGE_FACTOR,
                 min_pixels: int = MIN_PIXELS,
                 max_pixels: int = MAX_PIXELS) -> tuple[int, int]:
    """
    Rescales the image so that the following conditions are met:

    1. Both dimensions (height and width) are divisible by 'factor'.

    2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].

    3. The aspect ratio of the image is maintained as closely as possible.
    """
    if max(height, width) / min(height, width) > MAX_RATIO:
        raise ValueError(
            f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
        )
    h_bar = max(factor, round_by_factor(height, factor))
    w_bar = max(factor, round_by_factor(width, factor))
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = floor_by_factor(height / beta, factor)
        w_bar = floor_by_factor(width / beta, factor)
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = ceil_by_factor(height * beta, factor)
        w_bar = ceil_by_factor(width * beta, factor)
    return h_bar, w_bar


def fetch_image(ele: dict[str, str | Image.Image],
                size_factor: int = IMAGE_FACTOR) -> Image.Image:
    if "image" in ele:
        image = ele["image"]
    else:
        image = ele["image_url"]
    image_obj = None
    if isinstance(image, Image.Image):
        image_obj = image
    elif image.startswith("http://") or image.startswith("https://"):
        image_obj = Image.open(requests.get(image, stream=True).raw)
    elif image.startswith("file://"):
        image_obj = Image.open(image[7:])
    elif image.startswith("data:image"):
        if "base64," in image:
            _, base64_data = image.split("base64,", 1)
            data = base64.b64decode(base64_data)
            image_obj = Image.open(BytesIO(data))
    else:
        image_obj = Image.open(image)
    if image_obj is None:
        raise ValueError(
            f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}"
        )
    image = image_obj.convert("RGB")
    ## resize
    if "resized_height" in ele and "resized_width" in ele:
        resized_height, resized_width = smart_resize(
            ele["resized_height"],
            ele["resized_width"],
            factor=size_factor,
        )
    else:
        width, height = image.size
        min_pixels = ele.get("min_pixels", MIN_PIXELS)
        max_pixels = ele.get("max_pixels", MAX_PIXELS)
        resized_height, resized_width = smart_resize(
            height,
            width,
            factor=size_factor,
            min_pixels=min_pixels,
            max_pixels=max_pixels,
        )
    image = image.resize((resized_width, resized_height))

    return image


def smart_nframes(
    ele: dict,
    total_frames: int,
    video_fps: int | float,
) -> int:
    """calculate the number of frames for video used for model inputs.

    Args:
        ele (dict): a dict contains the configuration of video.
            support either `fps` or `nframes`:
                - nframes: the number of frames to extract for model inputs.
                - fps: the fps to extract frames for model inputs.
                    - min_frames: the minimum number of frames of the video, only used when fps is provided.
                    - max_frames: the maximum number of frames of the video, only used when fps is provided.
        total_frames (int): the original total number of frames of the video.
        video_fps (int | float): the original fps of the video.

    Raises:
        ValueError: nframes should in interval [FRAME_FACTOR, total_frames].

    Returns:
        int: the number of frames for video used for model inputs.
    """
    assert not ("fps" in ele and
                "nframes" in ele), "Only accept either `fps` or `nframes`"
    if "nframes" in ele:
        nframes = round_by_factor(ele["nframes"], FRAME_FACTOR)
    else:
        fps = ele.get("fps", FPS)
        min_frames = ceil_by_factor(
            ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR)
        max_frames = floor_by_factor(
            ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)),
            FRAME_FACTOR)
        nframes = total_frames / video_fps * fps
        nframes = min(max(nframes, min_frames), max_frames)
        nframes = round_by_factor(nframes, FRAME_FACTOR)
    if not (FRAME_FACTOR <= nframes and nframes <= total_frames):
        raise ValueError(
            f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}."
        )
    return nframes


def _read_video_torchvision(ele: dict,) -> torch.Tensor:
    """read video using torchvision.io.read_video

    Args:
        ele (dict): a dict contains the configuration of video.
        support keys:
            - video: the path of video. support "file://", "http://", "https://" and local path.
            - video_start: the start time of video.
            - video_end: the end time of video.
    Returns:
        torch.Tensor: the video tensor with shape (T, C, H, W).
    """
    video_path = ele["video"]
    if version.parse(torchvision.__version__) < version.parse("0.19.0"):
        if "http://" in video_path or "https://" in video_path:
            warnings.warn(
                "torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0."
            )
        if "file://" in video_path:
            video_path = video_path[7:]
    st = time.time()
    video, audio, info = io.read_video(
        video_path,
        start_pts=ele.get("video_start", 0.0),
        end_pts=ele.get("video_end", None),
        pts_unit="sec",
        output_format="TCHW",
    )
    total_frames, video_fps = video.size(0), info["video_fps"]
    logger.info(
        f"torchvision:  {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s"
    )
    nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
    idx = torch.linspace(0, total_frames - 1, nframes).round().long()
    video = video[idx]
    return video


def is_decord_available() -> bool:
    import importlib.util

    return importlib.util.find_spec("decord") is not None


def _read_video_decord(ele: dict,) -> torch.Tensor:
    """read video using decord.VideoReader

    Args:
        ele (dict): a dict contains the configuration of video.
        support keys:
            - video: the path of video. support "file://", "http://", "https://" and local path.
            - video_start: the start time of video.
            - video_end: the end time of video.
    Returns:
        torch.Tensor: the video tensor with shape (T, C, H, W).
    """
    import decord
    video_path = ele["video"]
    st = time.time()
    vr = decord.VideoReader(video_path)
    # TODO: support start_pts and end_pts
    if 'video_start' in ele or 'video_end' in ele:
        raise NotImplementedError(
            "not support start_pts and end_pts in decord for now.")
    total_frames, video_fps = len(vr), vr.get_avg_fps()
    logger.info(
        f"decord:  {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s"
    )
    nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
    idx = torch.linspace(0, total_frames - 1, nframes).round().long().tolist()
    video = vr.get_batch(idx).asnumpy()
    video = torch.tensor(video).permute(0, 3, 1, 2)  # Convert to TCHW format
    return video


VIDEO_READER_BACKENDS = {
    "decord": _read_video_decord,
    "torchvision": _read_video_torchvision,
}

FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None)


@lru_cache(maxsize=1)
def get_video_reader_backend() -> str:
    if FORCE_QWENVL_VIDEO_READER is not None:
        video_reader_backend = FORCE_QWENVL_VIDEO_READER
    elif is_decord_available():
        video_reader_backend = "decord"
    else:
        video_reader_backend = "torchvision"
    print(
        f"qwen-vl-utils using {video_reader_backend} to read video.",
        file=sys.stderr)
    return video_reader_backend


def fetch_video(
        ele: dict,
        image_factor: int = IMAGE_FACTOR) -> torch.Tensor | list[Image.Image]:
    if isinstance(ele["video"], str):
        video_reader_backend = get_video_reader_backend()
        video = VIDEO_READER_BACKENDS[video_reader_backend](ele)
        nframes, _, height, width = video.shape

        min_pixels = ele.get("min_pixels", VIDEO_MIN_PIXELS)
        total_pixels = ele.get("total_pixels", VIDEO_TOTAL_PIXELS)
        max_pixels = max(
            min(VIDEO_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR),
            int(min_pixels * 1.05))
        max_pixels = ele.get("max_pixels", max_pixels)
        if "resized_height" in ele and "resized_width" in ele:
            resized_height, resized_width = smart_resize(
                ele["resized_height"],
                ele["resized_width"],
                factor=image_factor,
            )
        else:
            resized_height, resized_width = smart_resize(
                height,
                width,
                factor=image_factor,
                min_pixels=min_pixels,
                max_pixels=max_pixels,
            )
        video = transforms.functional.resize(
            video,
            [resized_height, resized_width],
            interpolation=InterpolationMode.BICUBIC,
            antialias=True,
        ).float()
        return video
    else:
        assert isinstance(ele["video"], (list, tuple))
        process_info = ele.copy()
        process_info.pop("type", None)
        process_info.pop("video", None)
        images = [
            fetch_image({
                "image": video_element,
                **process_info
            },
                        size_factor=image_factor)
            for video_element in ele["video"]
        ]
        nframes = ceil_by_factor(len(images), FRAME_FACTOR)
        if len(images) < nframes:
            images.extend([images[-1]] * (nframes - len(images)))
        return images


def extract_vision_info(
        conversations: list[dict] | list[list[dict]]) -> list[dict]:
    vision_infos = []
    if isinstance(conversations[0], dict):
        conversations = [conversations]
    for conversation in conversations:
        for message in conversation:
            if isinstance(message["content"], list):
                for ele in message["content"]:
                    if ("image" in ele or "image_url" in ele or
                            "video" in ele or
                            ele["type"] in ("image", "image_url", "video")):
                        vision_infos.append(ele)
    return vision_infos


def process_vision_info(
    conversations: list[dict] | list[list[dict]],
) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] |
           None]:
    vision_infos = extract_vision_info(conversations)
    ## Read images or videos
    image_inputs = []
    video_inputs = []
    for vision_info in vision_infos:
        if "image" in vision_info or "image_url" in vision_info:
            image_inputs.append(fetch_image(vision_info))
        elif "video" in vision_info:
            video_inputs.append(fetch_video(vision_info))
        else:
            raise ValueError("image, image_url or video should in content.")
    if len(image_inputs) == 0:
        image_inputs = None
    if len(video_inputs) == 0:
        video_inputs = None
    return image_inputs, video_inputs