|
|
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers, |
|
SchedulerMixin, |
|
SchedulerOutput) |
|
from diffusers.utils import deprecate, is_scipy_available |
|
|
|
if is_scipy_available(): |
|
import scipy.stats |
|
|
|
|
|
class FlowUniPCMultistepScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
`UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
solver_order (`int`, default `2`): |
|
The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1` |
|
due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for |
|
unconditional sampling. |
|
prediction_type (`str`, defaults to "flow_prediction"): |
|
Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts |
|
the flow of the diffusion process. |
|
thresholding (`bool`, defaults to `False`): |
|
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such |
|
as Stable Diffusion. |
|
dynamic_thresholding_ratio (`float`, defaults to 0.995): |
|
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. |
|
sample_max_value (`float`, defaults to 1.0): |
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`. |
|
predict_x0 (`bool`, defaults to `True`): |
|
Whether to use the updating algorithm on the predicted x0. |
|
solver_type (`str`, default `bh2`): |
|
Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2` |
|
otherwise. |
|
lower_order_final (`bool`, default `True`): |
|
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can |
|
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10. |
|
disable_corrector (`list`, default `[]`): |
|
Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)` |
|
and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is |
|
usually disabled during the first few steps. |
|
solver_p (`SchedulerMixin`, default `None`): |
|
Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`. |
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`): |
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, |
|
the sigmas are determined according to a sequence of noise levels {σi}. |
|
use_exponential_sigmas (`bool`, *optional*, defaults to `False`): |
|
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process. |
|
timestep_spacing (`str`, defaults to `"linspace"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
steps_offset (`int`, defaults to 0): |
|
An offset added to the inference steps, as required by some model families. |
|
final_sigmas_type (`str`, defaults to `"zero"`): |
|
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final |
|
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
solver_order: int = 2, |
|
prediction_type: str = "flow_prediction", |
|
shift: Optional[float] = 1.0, |
|
use_dynamic_shifting=False, |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
sample_max_value: float = 1.0, |
|
predict_x0: bool = True, |
|
solver_type: str = "bh2", |
|
lower_order_final: bool = True, |
|
disable_corrector: List[int] = [], |
|
solver_p: SchedulerMixin = None, |
|
timestep_spacing: str = "linspace", |
|
steps_offset: int = 0, |
|
final_sigmas_type: Optional[str] = "zero", |
|
): |
|
|
|
if solver_type not in ["bh1", "bh2"]: |
|
if solver_type in ["midpoint", "heun", "logrho"]: |
|
self.register_to_config(solver_type="bh2") |
|
else: |
|
raise NotImplementedError( |
|
f"{solver_type} is not implemented for {self.__class__}") |
|
|
|
self.predict_x0 = predict_x0 |
|
|
|
self.num_inference_steps = None |
|
alphas = np.linspace(1, 1 / num_train_timesteps, |
|
num_train_timesteps)[::-1].copy() |
|
sigmas = 1.0 - alphas |
|
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32) |
|
|
|
if not use_dynamic_shifting: |
|
|
|
sigmas = shift * sigmas / (1 + |
|
(shift - 1) * sigmas) |
|
|
|
self.sigmas = sigmas |
|
self.timesteps = sigmas * num_train_timesteps |
|
|
|
self.model_outputs = [None] * solver_order |
|
self.timestep_list = [None] * solver_order |
|
self.lower_order_nums = 0 |
|
self.disable_corrector = disable_corrector |
|
self.solver_p = solver_p |
|
self.last_sample = None |
|
self._step_index = None |
|
self._begin_index = None |
|
|
|
self.sigmas = self.sigmas.to( |
|
"cpu") |
|
self.sigma_min = self.sigmas[-1].item() |
|
self.sigma_max = self.sigmas[0].item() |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increase 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
@property |
|
def begin_index(self): |
|
""" |
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. |
|
""" |
|
return self._begin_index |
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0): |
|
""" |
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. |
|
|
|
Args: |
|
begin_index (`int`): |
|
The begin index for the scheduler. |
|
""" |
|
self._begin_index = begin_index |
|
|
|
|
|
def set_timesteps( |
|
self, |
|
num_inference_steps: Union[int, None] = None, |
|
device: Union[str, torch.device] = None, |
|
sigmas: Optional[List[float]] = None, |
|
mu: Optional[Union[float, None]] = None, |
|
shift: Optional[Union[float, None]] = None, |
|
): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
Args: |
|
num_inference_steps (`int`): |
|
Total number of the spacing of the time steps. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
|
|
if self.config.use_dynamic_shifting and mu is None: |
|
raise ValueError( |
|
" you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`" |
|
) |
|
|
|
if sigmas is None: |
|
sigmas = np.linspace(self.sigma_max, self.sigma_min, |
|
num_inference_steps + |
|
1).copy()[:-1] |
|
|
|
if self.config.use_dynamic_shifting: |
|
sigmas = self.time_shift(mu, 1.0, sigmas) |
|
else: |
|
if shift is None: |
|
shift = self.config.shift |
|
sigmas = shift * sigmas / (1 + |
|
(shift - 1) * sigmas) |
|
|
|
if self.config.final_sigmas_type == "sigma_min": |
|
sigma_last = ((1 - self.alphas_cumprod[0]) / |
|
self.alphas_cumprod[0])**0.5 |
|
elif self.config.final_sigmas_type == "zero": |
|
sigma_last = 0 |
|
else: |
|
raise ValueError( |
|
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" |
|
) |
|
|
|
timesteps = sigmas * self.config.num_train_timesteps |
|
sigmas = np.concatenate([sigmas, [sigma_last] |
|
]).astype(np.float32) |
|
|
|
self.sigmas = torch.from_numpy(sigmas) |
|
self.timesteps = torch.from_numpy(timesteps).to( |
|
device=device, dtype=torch.int64) |
|
|
|
self.num_inference_steps = len(timesteps) |
|
|
|
self.model_outputs = [ |
|
None, |
|
] * self.config.solver_order |
|
self.lower_order_nums = 0 |
|
self.last_sample = None |
|
if self.solver_p: |
|
self.solver_p.set_timesteps(self.num_inference_steps, device=device) |
|
|
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
self.sigmas = self.sigmas.to( |
|
"cpu") |
|
|
|
|
|
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: |
|
""" |
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the |
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by |
|
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing |
|
pixels from saturation at each step. We find that dynamic thresholding results in significantly better |
|
photorealism as well as better image-text alignment, especially when using very large guidance weights." |
|
|
|
https://arxiv.org/abs/2205.11487 |
|
""" |
|
dtype = sample.dtype |
|
batch_size, channels, *remaining_dims = sample.shape |
|
|
|
if dtype not in (torch.float32, torch.float64): |
|
sample = sample.float( |
|
) |
|
|
|
|
|
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) |
|
|
|
abs_sample = sample.abs() |
|
|
|
s = torch.quantile( |
|
abs_sample, self.config.dynamic_thresholding_ratio, dim=1) |
|
s = torch.clamp( |
|
s, min=1, max=self.config.sample_max_value |
|
) |
|
s = s.unsqueeze( |
|
1) |
|
sample = torch.clamp( |
|
sample, -s, s |
|
) / s |
|
|
|
sample = sample.reshape(batch_size, channels, *remaining_dims) |
|
sample = sample.to(dtype) |
|
|
|
return sample |
|
|
|
|
|
def _sigma_to_t(self, sigma): |
|
return sigma * self.config.num_train_timesteps |
|
|
|
def _sigma_to_alpha_sigma_t(self, sigma): |
|
return 1 - sigma, sigma |
|
|
|
|
|
def time_shift(self, mu: float, sigma: float, t: torch.Tensor): |
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1)**sigma) |
|
|
|
def convert_model_output( |
|
self, |
|
model_output: torch.Tensor, |
|
*args, |
|
sample: torch.Tensor = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
r""" |
|
Convert the model output to the corresponding type the UniPC algorithm needs. |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from the learned diffusion model. |
|
timestep (`int`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
The converted model output. |
|
""" |
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) |
|
if sample is None: |
|
if len(args) > 1: |
|
sample = args[1] |
|
else: |
|
raise ValueError( |
|
"missing `sample` as a required keyward argument") |
|
if timestep is not None: |
|
deprecate( |
|
"timesteps", |
|
"1.0.0", |
|
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
|
|
if self.predict_x0: |
|
if self.config.prediction_type == "flow_prediction": |
|
sigma_t = self.sigmas[self.step_index] |
|
x0_pred = sample - sigma_t * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`," |
|
" `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler." |
|
) |
|
|
|
if self.config.thresholding: |
|
x0_pred = self._threshold_sample(x0_pred) |
|
|
|
return x0_pred |
|
else: |
|
if self.config.prediction_type == "flow_prediction": |
|
sigma_t = self.sigmas[self.step_index] |
|
epsilon = sample - (1 - sigma_t) * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`," |
|
" `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler." |
|
) |
|
|
|
if self.config.thresholding: |
|
sigma_t = self.sigmas[self.step_index] |
|
x0_pred = sample - sigma_t * model_output |
|
x0_pred = self._threshold_sample(x0_pred) |
|
epsilon = model_output + x0_pred |
|
|
|
return epsilon |
|
|
|
def multistep_uni_p_bh_update( |
|
self, |
|
model_output: torch.Tensor, |
|
*args, |
|
sample: torch.Tensor = None, |
|
order: int = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified. |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from the learned diffusion model at the current timestep. |
|
prev_timestep (`int`): |
|
The previous discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
order (`int`): |
|
The order of UniP at this timestep (corresponds to the *p* in UniPC-p). |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
The sample tensor at the previous timestep. |
|
""" |
|
prev_timestep = args[0] if len(args) > 0 else kwargs.pop( |
|
"prev_timestep", None) |
|
if sample is None: |
|
if len(args) > 1: |
|
sample = args[1] |
|
else: |
|
raise ValueError( |
|
" missing `sample` as a required keyward argument") |
|
if order is None: |
|
if len(args) > 2: |
|
order = args[2] |
|
else: |
|
raise ValueError( |
|
" missing `order` as a required keyward argument") |
|
if prev_timestep is not None: |
|
deprecate( |
|
"prev_timestep", |
|
"1.0.0", |
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
model_output_list = self.model_outputs |
|
|
|
s0 = self.timestep_list[-1] |
|
m0 = model_output_list[-1] |
|
x = sample |
|
|
|
if self.solver_p: |
|
x_t = self.solver_p.step(model_output, s0, x).prev_sample |
|
return x_t |
|
|
|
sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[ |
|
self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) |
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) |
|
|
|
h = lambda_t - lambda_s0 |
|
device = sample.device |
|
|
|
rks = [] |
|
D1s = [] |
|
for i in range(1, order): |
|
si = self.step_index - i |
|
mi = model_output_list[-(i + 1)] |
|
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si]) |
|
lambda_si = torch.log(alpha_si) - torch.log(sigma_si) |
|
rk = (lambda_si - lambda_s0) / h |
|
rks.append(rk) |
|
D1s.append((mi - m0) / rk) |
|
|
|
rks.append(1.0) |
|
rks = torch.tensor(rks, device=device) |
|
|
|
R = [] |
|
b = [] |
|
|
|
hh = -h if self.predict_x0 else h |
|
h_phi_1 = torch.expm1(hh) |
|
h_phi_k = h_phi_1 / hh - 1 |
|
|
|
factorial_i = 1 |
|
|
|
if self.config.solver_type == "bh1": |
|
B_h = hh |
|
elif self.config.solver_type == "bh2": |
|
B_h = torch.expm1(hh) |
|
else: |
|
raise NotImplementedError() |
|
|
|
for i in range(1, order + 1): |
|
R.append(torch.pow(rks, i - 1)) |
|
b.append(h_phi_k * factorial_i / B_h) |
|
factorial_i *= i + 1 |
|
h_phi_k = h_phi_k / hh - 1 / factorial_i |
|
|
|
R = torch.stack(R) |
|
b = torch.tensor(b, device=device) |
|
|
|
if len(D1s) > 0: |
|
D1s = torch.stack(D1s, dim=1) |
|
|
|
if order == 2: |
|
rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device) |
|
else: |
|
rhos_p = torch.linalg.solve(R[:-1, :-1], |
|
b[:-1]).to(device).to(x.dtype) |
|
else: |
|
D1s = None |
|
|
|
if self.predict_x0: |
|
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 |
|
if D1s is not None: |
|
pred_res = torch.einsum("k,bkc...->bc...", rhos_p, |
|
D1s) |
|
else: |
|
pred_res = 0 |
|
x_t = x_t_ - alpha_t * B_h * pred_res |
|
else: |
|
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 |
|
if D1s is not None: |
|
pred_res = torch.einsum("k,bkc...->bc...", rhos_p, |
|
D1s) |
|
else: |
|
pred_res = 0 |
|
x_t = x_t_ - sigma_t * B_h * pred_res |
|
|
|
x_t = x_t.to(x.dtype) |
|
return x_t |
|
|
|
def multistep_uni_c_bh_update( |
|
self, |
|
this_model_output: torch.Tensor, |
|
*args, |
|
last_sample: torch.Tensor = None, |
|
this_sample: torch.Tensor = None, |
|
order: int = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
One step for the UniC (B(h) version). |
|
|
|
Args: |
|
this_model_output (`torch.Tensor`): |
|
The model outputs at `x_t`. |
|
this_timestep (`int`): |
|
The current timestep `t`. |
|
last_sample (`torch.Tensor`): |
|
The generated sample before the last predictor `x_{t-1}`. |
|
this_sample (`torch.Tensor`): |
|
The generated sample after the last predictor `x_{t}`. |
|
order (`int`): |
|
The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
The corrected sample tensor at the current timestep. |
|
""" |
|
this_timestep = args[0] if len(args) > 0 else kwargs.pop( |
|
"this_timestep", None) |
|
if last_sample is None: |
|
if len(args) > 1: |
|
last_sample = args[1] |
|
else: |
|
raise ValueError( |
|
" missing`last_sample` as a required keyward argument") |
|
if this_sample is None: |
|
if len(args) > 2: |
|
this_sample = args[2] |
|
else: |
|
raise ValueError( |
|
" missing`this_sample` as a required keyward argument") |
|
if order is None: |
|
if len(args) > 3: |
|
order = args[3] |
|
else: |
|
raise ValueError( |
|
" missing`order` as a required keyward argument") |
|
if this_timestep is not None: |
|
deprecate( |
|
"this_timestep", |
|
"1.0.0", |
|
"Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
model_output_list = self.model_outputs |
|
|
|
m0 = model_output_list[-1] |
|
x = last_sample |
|
x_t = this_sample |
|
model_t = this_model_output |
|
|
|
sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[ |
|
self.step_index - 1] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) |
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) |
|
|
|
h = lambda_t - lambda_s0 |
|
device = this_sample.device |
|
|
|
rks = [] |
|
D1s = [] |
|
for i in range(1, order): |
|
si = self.step_index - (i + 1) |
|
mi = model_output_list[-(i + 1)] |
|
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si]) |
|
lambda_si = torch.log(alpha_si) - torch.log(sigma_si) |
|
rk = (lambda_si - lambda_s0) / h |
|
rks.append(rk) |
|
D1s.append((mi - m0) / rk) |
|
|
|
rks.append(1.0) |
|
rks = torch.tensor(rks, device=device) |
|
|
|
R = [] |
|
b = [] |
|
|
|
hh = -h if self.predict_x0 else h |
|
h_phi_1 = torch.expm1(hh) |
|
h_phi_k = h_phi_1 / hh - 1 |
|
|
|
factorial_i = 1 |
|
|
|
if self.config.solver_type == "bh1": |
|
B_h = hh |
|
elif self.config.solver_type == "bh2": |
|
B_h = torch.expm1(hh) |
|
else: |
|
raise NotImplementedError() |
|
|
|
for i in range(1, order + 1): |
|
R.append(torch.pow(rks, i - 1)) |
|
b.append(h_phi_k * factorial_i / B_h) |
|
factorial_i *= i + 1 |
|
h_phi_k = h_phi_k / hh - 1 / factorial_i |
|
|
|
R = torch.stack(R) |
|
b = torch.tensor(b, device=device) |
|
|
|
if len(D1s) > 0: |
|
D1s = torch.stack(D1s, dim=1) |
|
else: |
|
D1s = None |
|
|
|
|
|
if order == 1: |
|
rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device) |
|
else: |
|
rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype) |
|
|
|
if self.predict_x0: |
|
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 |
|
if D1s is not None: |
|
corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s) |
|
else: |
|
corr_res = 0 |
|
D1_t = model_t - m0 |
|
x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t) |
|
else: |
|
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 |
|
if D1s is not None: |
|
corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s) |
|
else: |
|
corr_res = 0 |
|
D1_t = model_t - m0 |
|
x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t) |
|
x_t = x_t.to(x.dtype) |
|
return x_t |
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
indices = (schedule_timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
pos = 1 if len(indices) > 1 else 0 |
|
|
|
return indices[pos].item() |
|
|
|
|
|
def _init_step_index(self, timestep): |
|
""" |
|
Initialize the step_index counter for the scheduler. |
|
""" |
|
|
|
if self.begin_index is None: |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
self._step_index = self.index_for_timestep(timestep) |
|
else: |
|
self._step_index = self._begin_index |
|
|
|
def step(self, |
|
model_output: torch.Tensor, |
|
timestep: Union[int, torch.Tensor], |
|
sample: torch.Tensor, |
|
return_dict: bool = True, |
|
generator=None) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with |
|
the multistep UniPC. |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`int`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
|
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
use_corrector = ( |
|
self.step_index > 0 and |
|
self.step_index - 1 not in self.disable_corrector and |
|
self.last_sample is not None |
|
) |
|
|
|
model_output_convert = self.convert_model_output( |
|
model_output, sample=sample) |
|
if use_corrector: |
|
sample = self.multistep_uni_c_bh_update( |
|
this_model_output=model_output_convert, |
|
last_sample=self.last_sample, |
|
this_sample=sample, |
|
order=self.this_order, |
|
) |
|
|
|
for i in range(self.config.solver_order - 1): |
|
self.model_outputs[i] = self.model_outputs[i + 1] |
|
self.timestep_list[i] = self.timestep_list[i + 1] |
|
|
|
self.model_outputs[-1] = model_output_convert |
|
self.timestep_list[-1] = timestep |
|
|
|
if self.config.lower_order_final: |
|
this_order = min(self.config.solver_order, |
|
len(self.timesteps) - |
|
self.step_index) |
|
else: |
|
this_order = self.config.solver_order |
|
|
|
self.this_order = min(this_order, |
|
self.lower_order_nums + 1) |
|
assert self.this_order > 0 |
|
|
|
self.last_sample = sample |
|
prev_sample = self.multistep_uni_p_bh_update( |
|
model_output=model_output, |
|
sample=sample, |
|
order=self.this_order, |
|
) |
|
|
|
if self.lower_order_nums < self.config.solver_order: |
|
self.lower_order_nums += 1 |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def scale_model_input(self, sample: torch.Tensor, *args, |
|
**kwargs) -> torch.Tensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The input sample. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
A scaled input sample. |
|
""" |
|
return sample |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.Tensor, |
|
noise: torch.Tensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.Tensor: |
|
|
|
sigmas = self.sigmas.to( |
|
device=original_samples.device, dtype=original_samples.dtype) |
|
if original_samples.device.type == "mps" and torch.is_floating_point( |
|
timesteps): |
|
|
|
schedule_timesteps = self.timesteps.to( |
|
original_samples.device, dtype=torch.float32) |
|
timesteps = timesteps.to( |
|
original_samples.device, dtype=torch.float32) |
|
else: |
|
schedule_timesteps = self.timesteps.to(original_samples.device) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
|
|
if self.begin_index is None: |
|
step_indices = [ |
|
self.index_for_timestep(t, schedule_timesteps) |
|
for t in timesteps |
|
] |
|
elif self.step_index is not None: |
|
|
|
step_indices = [self.step_index] * timesteps.shape[0] |
|
else: |
|
|
|
step_indices = [self.begin_index] * timesteps.shape[0] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
noisy_samples = alpha_t * original_samples + sigma_t * noise |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|