|
|
|
import torch |
|
|
|
try: |
|
import flash_attn_interface |
|
FLASH_ATTN_3_AVAILABLE = True |
|
except ModuleNotFoundError: |
|
FLASH_ATTN_3_AVAILABLE = False |
|
|
|
try: |
|
import flash_attn |
|
FLASH_ATTN_2_AVAILABLE = True |
|
except ModuleNotFoundError: |
|
FLASH_ATTN_2_AVAILABLE = False |
|
|
|
import warnings |
|
|
|
__all__ = [ |
|
'flash_attention', |
|
'attention', |
|
] |
|
|
|
|
|
def flash_attention( |
|
q, |
|
k, |
|
v, |
|
q_lens=None, |
|
k_lens=None, |
|
dropout_p=0., |
|
softmax_scale=None, |
|
q_scale=None, |
|
causal=False, |
|
window_size=(-1, -1), |
|
deterministic=False, |
|
dtype=torch.bfloat16, |
|
version=None, |
|
): |
|
""" |
|
q: [B, Lq, Nq, C1]. |
|
k: [B, Lk, Nk, C1]. |
|
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. |
|
q_lens: [B]. |
|
k_lens: [B]. |
|
dropout_p: float. Dropout probability. |
|
softmax_scale: float. The scaling of QK^T before applying softmax. |
|
causal: bool. Whether to apply causal attention mask. |
|
window_size: (left right). If not (-1, -1), apply sliding window local attention. |
|
deterministic: bool. If True, slightly slower and uses more memory. |
|
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. |
|
""" |
|
half_dtypes = (torch.float16, torch.bfloat16) |
|
assert dtype in half_dtypes |
|
assert q.device.type == 'cuda' and q.size(-1) <= 256 |
|
|
|
|
|
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype |
|
|
|
def half(x): |
|
return x if x.dtype in half_dtypes else x.to(dtype) |
|
|
|
|
|
if q_lens is None: |
|
q = half(q.flatten(0, 1)) |
|
q_lens = torch.tensor( |
|
[lq] * b, dtype=torch.int32).to( |
|
device=q.device, non_blocking=True) |
|
else: |
|
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) |
|
|
|
|
|
if k_lens is None: |
|
k = half(k.flatten(0, 1)) |
|
v = half(v.flatten(0, 1)) |
|
k_lens = torch.tensor( |
|
[lk] * b, dtype=torch.int32).to( |
|
device=k.device, non_blocking=True) |
|
else: |
|
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) |
|
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) |
|
|
|
q = q.to(v.dtype) |
|
k = k.to(v.dtype) |
|
|
|
if q_scale is not None: |
|
q = q * q_scale |
|
|
|
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: |
|
warnings.warn( |
|
'Flash attention 3 is not available, use flash attention 2 instead.' |
|
) |
|
|
|
|
|
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE: |
|
|
|
x = flash_attn_interface.flash_attn_varlen_func( |
|
q=q, |
|
k=k, |
|
v=v, |
|
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( |
|
0, dtype=torch.int32).to(q.device, non_blocking=True), |
|
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( |
|
0, dtype=torch.int32).to(q.device, non_blocking=True), |
|
seqused_q=None, |
|
seqused_k=None, |
|
max_seqlen_q=lq, |
|
max_seqlen_k=lk, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
deterministic=deterministic)[0].unflatten(0, (b, lq)) |
|
else: |
|
assert FLASH_ATTN_2_AVAILABLE |
|
x = flash_attn.flash_attn_varlen_func( |
|
q=q, |
|
k=k, |
|
v=v, |
|
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( |
|
0, dtype=torch.int32).to(q.device, non_blocking=True), |
|
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( |
|
0, dtype=torch.int32).to(q.device, non_blocking=True), |
|
max_seqlen_q=lq, |
|
max_seqlen_k=lk, |
|
dropout_p=dropout_p, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=window_size, |
|
deterministic=deterministic).unflatten(0, (b, lq)) |
|
|
|
|
|
return x.type(out_dtype) |
|
|
|
|
|
def attention( |
|
q, |
|
k, |
|
v, |
|
q_lens=None, |
|
k_lens=None, |
|
dropout_p=0., |
|
softmax_scale=None, |
|
q_scale=None, |
|
causal=False, |
|
window_size=(-1, -1), |
|
deterministic=False, |
|
dtype=torch.bfloat16, |
|
fa_version=None, |
|
): |
|
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: |
|
return flash_attention( |
|
q=q, |
|
k=k, |
|
v=v, |
|
q_lens=q_lens, |
|
k_lens=k_lens, |
|
dropout_p=dropout_p, |
|
softmax_scale=softmax_scale, |
|
q_scale=q_scale, |
|
causal=causal, |
|
window_size=window_size, |
|
deterministic=deterministic, |
|
dtype=dtype, |
|
version=fa_version, |
|
) |
|
else: |
|
if q_lens is not None or k_lens is not None: |
|
warnings.warn( |
|
'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.' |
|
) |
|
attn_mask = None |
|
|
|
q = q.transpose(1, 2).to(dtype) |
|
k = k.transpose(1, 2).to(dtype) |
|
v = v.transpose(1, 2).to(dtype) |
|
|
|
out = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) |
|
|
|
out = out.transpose(1, 2).contiguous() |
|
return out |
|
|