Spaces:
Runtime error
Runtime error
File size: 9,295 Bytes
eadd7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import math
from mmcv import Config
from mmcv.runner import build_optimizer as mm_build_optimizer, OPTIMIZER_BUILDERS, DefaultOptimizerConstructor, \
OPTIMIZERS
from mmcv.utils import _BatchNorm, _InstanceNorm
from torch.nn import GroupNorm, LayerNorm
from .logger import get_root_logger
from typing import Tuple, Optional, Callable
import torch
from torch.optim.optimizer import Optimizer
from came_pytorch import CAME
def auto_scale_lr(effective_bs, optimizer_cfg, rule='linear', base_batch_size=256):
assert rule in ['linear', 'sqrt']
logger = get_root_logger()
# scale by world size
if rule == 'sqrt':
scale_ratio = math.sqrt(effective_bs / base_batch_size)
elif rule == 'linear':
scale_ratio = effective_bs / base_batch_size
optimizer_cfg['lr'] *= scale_ratio
logger.info(f'Automatically adapt lr to {optimizer_cfg["lr"]:.5f} (using {rule} scaling rule).')
return scale_ratio
@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor(DefaultOptimizerConstructor):
def add_params(self, params, module, prefix='', is_dcn_module=None):
"""Add all parameters of module to the params list.
The parameters of the given module will be added to the list of param
groups, with specific rules defined by paramwise_cfg.
Args:
params (list[dict]): A list of param groups, it will be modified
in place.
module (nn.Module): The module to be added.
prefix (str): The prefix of the module
"""
# get param-wise options
custom_keys = self.paramwise_cfg.get('custom_keys', {})
# first sort with alphabet order and then sort with reversed len of str
# sorted_keys = sorted(sorted(custom_keys.keys()), key=len, reverse=True)
bias_lr_mult = self.paramwise_cfg.get('bias_lr_mult', 1.)
bias_decay_mult = self.paramwise_cfg.get('bias_decay_mult', 1.)
norm_decay_mult = self.paramwise_cfg.get('norm_decay_mult', 1.)
bypass_duplicate = self.paramwise_cfg.get('bypass_duplicate', False)
# special rules for norm layers and depth-wise conv layers
is_norm = isinstance(module,
(_BatchNorm, _InstanceNorm, GroupNorm, LayerNorm))
for name, param in module.named_parameters(recurse=False):
base_lr = self.base_lr
if name == 'bias' and not (is_norm or is_dcn_module):
base_lr *= bias_lr_mult
# apply weight decay policies
base_wd = self.base_wd
if self.base_wd is not None:
# norm decay
if is_norm:
base_wd *= norm_decay_mult
# bias lr and decay
elif name == 'bias' and not is_dcn_module:
# TODO: current bias_decay_mult will have affect on DCN
base_wd *= bias_decay_mult
param_group = {'params': [param]}
if not param.requires_grad:
param_group['requires_grad'] = False
params.append(param_group)
continue
if bypass_duplicate and self._is_in(param_group, params):
logger = get_root_logger()
logger.warn(f'{prefix} is duplicate. It is skipped since '
f'bypass_duplicate={bypass_duplicate}')
continue
# if the parameter match one of the custom keys, ignore other rules
is_custom = False
for key in custom_keys:
if isinstance(key, tuple):
scope, key_name = key
else:
scope, key_name = None, key
if scope is not None and scope not in f'{prefix}':
continue
if key_name in f'{prefix}.{name}':
is_custom = True
if 'lr_mult' in custom_keys[key]:
# if 'base_classes' in f'{prefix}.{name}' or 'attn_base' in f'{prefix}.{name}':
# param_group['lr'] = self.base_lr
# else:
param_group['lr'] = self.base_lr * custom_keys[key]['lr_mult']
elif 'lr' not in param_group:
param_group['lr'] = base_lr
if self.base_wd is not None:
if 'decay_mult' in custom_keys[key]:
param_group['weight_decay'] = self.base_wd * custom_keys[key]['decay_mult']
elif 'weight_decay' not in param_group:
param_group['weight_decay'] = base_wd
if not is_custom:
# bias_lr_mult affects all bias parameters
# except for norm.bias dcn.conv_offset.bias
if base_lr != self.base_lr:
param_group['lr'] = base_lr
if base_wd != self.base_wd:
param_group['weight_decay'] = base_wd
params.append(param_group)
for child_name, child_mod in module.named_children():
child_prefix = f'{prefix}.{child_name}' if prefix else child_name
self.add_params(
params,
child_mod,
prefix=child_prefix,
is_dcn_module=is_dcn_module)
def build_optimizer(model, optimizer_cfg):
# default parameter-wise config
logger = get_root_logger()
if hasattr(model, 'module'):
model = model.module
# set optimizer constructor
optimizer_cfg.setdefault('constructor', 'MyOptimizerConstructor')
# parameter-wise setting: cancel weight decay for some specific modules
custom_keys = dict()
for name, module in model.named_modules():
if hasattr(module, 'zero_weight_decay'):
custom_keys.update({(name, key): dict(decay_mult=0) for key in module.zero_weight_decay})
paramwise_cfg = Config(dict(cfg=dict(custom_keys=custom_keys)))
given_cfg = optimizer_cfg.get('paramwise_cfg')
if given_cfg:
paramwise_cfg.merge_from_dict(dict(cfg=given_cfg))
optimizer_cfg['paramwise_cfg'] = paramwise_cfg.cfg
# build optimizer
optimizer = mm_build_optimizer(model, optimizer_cfg)
weight_decay_groups = dict()
lr_groups = dict()
for group in optimizer.param_groups:
if not group.get('requires_grad', True): continue
lr_groups.setdefault(group['lr'], []).append(group)
weight_decay_groups.setdefault(group['weight_decay'], []).append(group)
learnable_count, fix_count = 0, 0
for p in model.parameters():
if p.requires_grad:
learnable_count += 1
else:
fix_count += 1
fix_info = f"{learnable_count} are learnable, {fix_count} are fix"
lr_info = "Lr group: " + ", ".join([f'{len(group)} params with lr {lr:.5f}' for lr, group in lr_groups.items()])
wd_info = "Weight decay group: " + ", ".join(
[f'{len(group)} params with weight decay {wd}' for wd, group in weight_decay_groups.items()])
opt_info = f"{optimizer.__class__.__name__} Optimizer: total {len(optimizer.param_groups)} param groups, {fix_info}. {lr_info}; {wd_info}."
logger.info(opt_info)
return optimizer
@OPTIMIZERS.register_module()
class Lion(Optimizer):
def __init__(
self,
params,
lr: float = 1e-4,
betas: Tuple[float, float] = (0.9, 0.99),
weight_decay: float = 0.0,
):
assert lr > 0.
assert all([0. <= beta <= 1. for beta in betas])
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
super().__init__(params, defaults)
@staticmethod
def update_fn(p, grad, exp_avg, lr, wd, beta1, beta2):
# stepweight decay
p.data.mul_(1 - lr * wd)
# weight update
update = exp_avg.clone().lerp_(grad, 1 - beta1).sign_()
p.add_(update, alpha=-lr)
# decay the momentum running average coefficient
exp_avg.lerp_(grad, 1 - beta2)
@staticmethod
def exists(val):
return val is not None
@torch.no_grad()
def step(
self,
closure: Optional[Callable] = None
):
loss = None
if self.exists(closure):
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in filter(lambda p: self.exists(p.grad), group['params']):
grad, lr, wd, beta1, beta2, state = p.grad, group['lr'], group['weight_decay'], *group['betas'], \
self.state[p]
# init state - exponential moving average of gradient values
if len(state) == 0:
state['exp_avg'] = torch.zeros_like(p)
exp_avg = state['exp_avg']
self.update_fn(
p,
grad,
exp_avg,
lr,
wd,
beta1,
beta2
)
return loss
@OPTIMIZERS.register_module()
class CAMEWrapper(CAME):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) |