import torch import webvtt import os import cv2 from minigpt4.common.eval_utils import prepare_texts, init_model from minigpt4.conversation.conversation import CONV_VISION from torchvision import transforms import json from tqdm import tqdm import soundfile as sf import argparse import moviepy.editor as mp import gradio as gr from pytubefix import YouTube import shutil from PIL import Image from moviepy.editor import VideoFileClip import torch import random import numpy as np import torch.backends.cudnn as cudnn def prepare_input(vis_processor,video_path,subtitle_path,instruction): cap = cv2.VideoCapture(video_path) if subtitle_path is not None: # Load the VTT subtitle file vtt_file = webvtt.read(subtitle_path) print("subtitle loaded successfully") clip = VideoFileClip(video_path) total_num_frames = int(clip.duration * clip.fps) # print("Video duration = ",clip.duration) clip.close() else : # calculate the total number of frames in the video using opencv total_num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) max_images_length = 45 max_sub_len = 400 images = [] frame_count = 0 sampling_interval = int(total_num_frames / max_images_length) if sampling_interval == 0: sampling_interval = 1 img_placeholder = "" subtitle_text_in_interval = "" history_subtitles = {} raw_frames=[] number_of_words=0 transform=transforms.Compose([ transforms.ToPILImage(), ]) while cap.isOpened(): ret, frame = cap.read() if not ret: break # Find the corresponding subtitle for the frame and combine the interval subtitles into one subtitle # we choose 1 frame for every 2 seconds,so we need to combine the subtitles in the interval of 2 seconds if subtitle_path is not None: for subtitle in vtt_file: sub=subtitle.text.replace('\n',' ') if (subtitle.start_in_seconds <= (frame_count / int(clip.fps)) <= subtitle.end_in_seconds) and sub not in subtitle_text_in_interval: if not history_subtitles.get(sub,False): subtitle_text_in_interval+=sub+" " history_subtitles[sub]=True break if frame_count % sampling_interval == 0: raw_frames.append(Image.fromarray(cv2.cvtColor(frame.copy(), cv2.COLOR_BGR2RGB))) frame = transform(frame[:,:,::-1]) # convert to RGB frame = vis_processor(frame) images.append(frame) img_placeholder += '' if subtitle_path is not None and subtitle_text_in_interval != "" and number_of_words< max_sub_len: img_placeholder+=f'{subtitle_text_in_interval}' number_of_words+=len(subtitle_text_in_interval.split(' ')) subtitle_text_in_interval = "" frame_count += 1 if len(images) >= max_images_length: break cap.release() cv2.destroyAllWindows() if len(images) == 0: # skip the video if no frame is extracted return None,None images = torch.stack(images) instruction = img_placeholder + '\n' + instruction return images,instruction def extract_audio(video_path, audio_path): video_clip = mp.VideoFileClip(video_path) audio_clip = video_clip.audio audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k") def generate_subtitles(video_path): video_id=video_path.split('/')[-1].split('.')[0] audio_path = f"workspace/inference_subtitles/mp3/{video_id}"+'.mp3' os.makedirs("workspace/inference_subtitles/mp3",exist_ok=True) if existed_subtitles.get(video_id,False): return f"workspace/inference_subtitles/{video_id}"+'.vtt' try: extract_audio(video_path,audio_path) print("successfully extracted") os.system(f"whisper {audio_path} --language English --model large --output_format vtt --output_dir workspace/inference_subtitles") # remove the audio file os.system(f"rm {audio_path}") print("subtitle successfully generated") return f"workspace/inference_subtitles/{video_id}"+'.vtt' except Exception as e: print("error",e) print("error",video_path) return None def run (video_path,instruction,model,vis_processor,gen_subtitles=True): if gen_subtitles: subtitle_path=generate_subtitles(video_path) else : subtitle_path=None prepared_images,prepared_instruction=prepare_input(vis_processor,video_path,subtitle_path,instruction) if prepared_images is None: return "Video cann't be open ,check the video path again" length=len(prepared_images) prepared_images=prepared_images.unsqueeze(0) conv = CONV_VISION.copy() conv.system = "" # if you want to make conversation comment the 2 lines above and make the conv is global variable conv.append_message(conv.roles[0], prepared_instruction) conv.append_message(conv.roles[1], None) prompt = [conv.get_prompt()] answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=1) return answers[0] def get_arguments(): parser = argparse.ArgumentParser(description="Inference parameters") parser.add_argument("--cfg-path", help="path to configuration file.",default="test_configs/llama2_test_config.yaml") parser.add_argument("--ckpt", type=str,default='checkpoints/video_llama_checkpoint_last.pth', help="path to checkpoint") parser.add_argument("--add_subtitles",action= 'store_true',help="whether to add subtitles") parser.add_argument("--question", type=str, help="question to ask") parser.add_argument("--video_path", type=str, help="Path to the video file") parser.add_argument("--max_new_tokens", type=int, default=512, help="max number of generated tokens") parser.add_argument("--lora_r", type=int, default=64, help="lora rank of the model") parser.add_argument("--lora_alpha", type=int, default=16, help="lora alpha") parser.add_argument( "--options", nargs="+", help="override some settings in the used config, the key-value pair " "in xxx=yyy format will be merged into config file (deprecate), " "change to --cfg-options instead.", ) return parser.parse_args() args=get_arguments() def setup_seeds(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) cudnn.benchmark = False cudnn.deterministic = True import yaml with open('test_configs/llama2_test_config.yaml') as file: config = yaml.load(file, Loader=yaml.FullLoader) seed=config['run']['seed'] print("seed",seed) model, vis_processor = init_model(args) conv = CONV_VISION.copy() conv.system = "" inference_subtitles_folder="inference_subtitles" os.makedirs(inference_subtitles_folder,exist_ok=True) existed_subtitles={} for sub in os.listdir(inference_subtitles_folder): existed_subtitles[sub.split('.')[0]]=True if __name__ == "__main__": video_path=args.video_path instruction=args.question add_subtitles=args.add_subtitles # setup_seeds(seed) pred=run(video_path,instruction,model,vis_processor,gen_subtitles=add_subtitles) print(pred)