Spaces:
Sleeping
Sleeping
new
Browse files
app.py
CHANGED
@@ -1,64 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
if
|
64 |
-
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
|
3 |
+
# gr.load("models/HuggingFaceH4/zephyr-7b-alpha").launch()
|
4 |
+
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
import gradio as gr
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
+
import faiss
|
10 |
|
11 |
+
# Step 1: Load Precomputed Embeddings and Metadata
|
12 |
+
def load_embeddings(embeddings_folder='embeddings'):
|
13 |
+
all_embeddings = []
|
14 |
+
metadata = []
|
15 |
+
for file in os.listdir(embeddings_folder):
|
16 |
+
if file.endswith('.npy'):
|
17 |
+
embedding_path = os.path.join(embeddings_folder, file)
|
18 |
+
embedding = np.load(embedding_path) # Shape: (27, 384)
|
19 |
+
all_embeddings.append(embedding)
|
20 |
+
# Metadata corresponds to each .npy file
|
21 |
+
meta_info = file.replace('.npy', '') # Example: 'course_1'
|
22 |
+
metadata.extend([meta_info] * embedding.shape[0]) # Repeat metadata for each sub-embedding
|
23 |
|
24 |
+
# Flatten list of embeddings to shape (n * 27, 384)
|
25 |
+
all_embeddings = np.vstack(all_embeddings)
|
26 |
+
return all_embeddings, metadata
|
27 |
|
28 |
+
embeddings, metadata = load_embeddings()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
# Step 2: Set Up FAISS Index with Flattened Embeddings
|
31 |
+
dimension = embeddings.shape[1] # Should be 384 after flattening
|
32 |
+
index = faiss.IndexFlatL2(dimension)
|
33 |
+
index.add(embeddings)
|
|
|
34 |
|
|
|
35 |
|
36 |
+
# Step 3: Load the Language Model
|
37 |
+
# model_name = "HuggingFaceH4/zephyr-7b-alpha"
|
38 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
40 |
|
41 |
+
model_name = "TheBloke/zephyr-7B-beta-GPTQ"
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="balanced", trust_remote_code=False)
|
|
|
|
|
|
|
|
|
|
|
44 |
|
|
|
|
|
45 |
|
46 |
+
# Step 4: Define the Retrieval Function
|
47 |
+
def retrieve_documents(query, top_k=3):
|
48 |
+
query_embedding = np.mean([embeddings[i] for i in range(len(metadata)) if query.lower() in metadata[i].lower()], axis=0)
|
49 |
+
distances, indices = index.search(np.array([query_embedding]), top_k)
|
50 |
+
retrieved_docs = [metadata[idx] for idx in indices[0]]
|
51 |
+
return retrieved_docs
|
52 |
|
53 |
+
# Step 5: Define the Response Generation Function
|
54 |
+
def generate_response(query):
|
55 |
+
retrieved_docs = retrieve_documents(query)
|
56 |
+
context = " ".join(retrieved_docs)
|
57 |
+
input_text = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
|
58 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
59 |
+
output = model.generate(**inputs, max_length=512)
|
60 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
61 |
+
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# Step 6: Create Gradio Interface
|
64 |
+
def gradio_interface(query):
|
65 |
+
response = generate_response(query)
|
66 |
+
return response
|
67 |
+
|
68 |
+
iface = gr.Interface(
|
69 |
+
fn=gradio_interface,
|
70 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
|
71 |
+
outputs="text",
|
72 |
+
title="RAG-based Course Search",
|
73 |
+
description="Enter a query to search for relevant courses using Retrieval Augmented Generation."
|
74 |
+
)
|
75 |
|
76 |
+
if _name_ == "_main_":
|
77 |
+
iface.launch()
|