Vishal1806 commited on
Commit
7505e2e
·
verified ·
1 Parent(s): 0946d33
Files changed (1) hide show
  1. app.py +64 -51
app.py CHANGED
@@ -1,64 +1,77 @@
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ # import gradio as gr
2
+
3
+ # gr.load("models/HuggingFaceH4/zephyr-7b-alpha").launch()
4
+
5
+ import os
6
+ import numpy as np
7
  import gradio as gr
8
+ from transformers import AutoModelForCausalLM, AutoTokenizer
9
+ import faiss
10
 
11
+ # Step 1: Load Precomputed Embeddings and Metadata
12
+ def load_embeddings(embeddings_folder='embeddings'):
13
+ all_embeddings = []
14
+ metadata = []
15
+ for file in os.listdir(embeddings_folder):
16
+ if file.endswith('.npy'):
17
+ embedding_path = os.path.join(embeddings_folder, file)
18
+ embedding = np.load(embedding_path) # Shape: (27, 384)
19
+ all_embeddings.append(embedding)
20
+ # Metadata corresponds to each .npy file
21
+ meta_info = file.replace('.npy', '') # Example: 'course_1'
22
+ metadata.extend([meta_info] * embedding.shape[0]) # Repeat metadata for each sub-embedding
23
 
24
+ # Flatten list of embeddings to shape (n * 27, 384)
25
+ all_embeddings = np.vstack(all_embeddings)
26
+ return all_embeddings, metadata
27
 
28
+ embeddings, metadata = load_embeddings()
 
 
 
 
 
 
 
 
29
 
30
+ # Step 2: Set Up FAISS Index with Flattened Embeddings
31
+ dimension = embeddings.shape[1] # Should be 384 after flattening
32
+ index = faiss.IndexFlatL2(dimension)
33
+ index.add(embeddings)
 
34
 
 
35
 
36
+ # Step 3: Load the Language Model
37
+ # model_name = "HuggingFaceH4/zephyr-7b-alpha"
38
+ # tokenizer = AutoTokenizer.from_pretrained(model_name)
39
+ # model = AutoModelForCausalLM.from_pretrained(model_name)
40
 
41
+ model_name = "TheBloke/zephyr-7B-beta-GPTQ"
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
43
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="balanced", trust_remote_code=False)
 
 
 
 
 
44
 
 
 
45
 
46
+ # Step 4: Define the Retrieval Function
47
+ def retrieve_documents(query, top_k=3):
48
+ query_embedding = np.mean([embeddings[i] for i in range(len(metadata)) if query.lower() in metadata[i].lower()], axis=0)
49
+ distances, indices = index.search(np.array([query_embedding]), top_k)
50
+ retrieved_docs = [metadata[idx] for idx in indices[0]]
51
+ return retrieved_docs
52
 
53
+ # Step 5: Define the Response Generation Function
54
+ def generate_response(query):
55
+ retrieved_docs = retrieve_documents(query)
56
+ context = " ".join(retrieved_docs)
57
+ input_text = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
58
+ inputs = tokenizer(input_text, return_tensors="pt")
59
+ output = model.generate(**inputs, max_length=512)
60
+ answer = tokenizer.decode(output[0], skip_special_tokens=True)
61
+ return answer
 
 
 
 
 
 
 
 
 
62
 
63
+ # Step 6: Create Gradio Interface
64
+ def gradio_interface(query):
65
+ response = generate_response(query)
66
+ return response
67
+
68
+ iface = gr.Interface(
69
+ fn=gradio_interface,
70
+ inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
71
+ outputs="text",
72
+ title="RAG-based Course Search",
73
+ description="Enter a query to search for relevant courses using Retrieval Augmented Generation."
74
+ )
75
 
76
+ if _name_ == "_main_":
77
+ iface.launch()